×

On the sharp oscillation criteria for half-linear second-order differential equations with several delay arguments. (English) Zbl 07422772

Summary: In the paper, we offer a qualitatively unimprovable oscillation result for half-linear several delay second-order differential equations, which improves and generalizes the one from the very recent study [I. Jadlovská and J. Džurina, Appl. Math. Comput. 380, Article ID 125289, 14 p. (2020; Zbl 1451.34086)]. The sharpness of our newly obtained criterion is illustrated via Euler-type half-linear several delay differential equations.

MSC:

34K11 Oscillation theory of functional-differential equations
34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations

Citations:

Zbl 1451.34086
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Agarwal, R. P.; Zhang, C.; Li, T., Some remarks on oscillation of second order neutral differential equations, Appl. Math. Comput., 274, 178-181 (2016) · Zbl 1410.34192
[2] Agwo, H.; Khodier, A.; Hassan, H. A., Oscillation criteria of second order half linear delay dynamic equations on time scales, Acta Math. Appl. Sin. Engl.Ser., 33, 1, 83-92 (2017) · Zbl 1365.34151
[3] Bohner, M.; Hassan, T. S.; Li, T., Fite-hille-wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments, Indagationes Math., 29, 2, 548-560 (2018) · Zbl 1395.34090
[4] Dosly, O.; Rehák, P., Half-linear Differential Equations, 202 (2005), Elsevier · Zbl 1090.34001
[5] Džurina, J.; Jadlovská, I., A note on oscillation of second-order delay differential equations, Appl. Math. Lett., 69, 126-132 (2017) · Zbl 1375.34100
[6] Džurina, J.; Stavroulakis, I. P., Oscillation criteria for second-order delay differential equations, Appl. Math. Comput., 140, 2-3, 445-453 (2003) · Zbl 1043.34071
[7] Han, Z.; Li, T.; Sun, S.; Sun, Y., Remarks on the paper [Appl. Math. Comput. 207 (2009) 388-396] [mr2489110], Appl. Math. Comput., 215, 11, 3998-4007 (2010) · Zbl 1188.34086
[8] Jadlovská, I.; Džurina, J., Kneser-type oscillation criteria for second-order half-linear delay differential equations, Appl. Math. Comput., 380, 125289 (2020) · Zbl 1451.34086
[9] Kneser, A., Untersuchungen über die reellen nullstellen der integrale linearer differentialgleichungen, Math. Ann., 42, 3, 409-435 (1893) · JFM 25.0522.01
[10] Kusano, T.; Wang, J., Oscillation properties of half-linear functional-differential equations of the second order, Hiroshima Math. J., 25, 2, 371-385 (1995) · Zbl 0840.34079
[11] Li, J.; Yang, J., Oscillation for second-order half-linear delay damped dynamic equations on time scales, Adv. Differ. Equ., 2019, 1, 1-12 (2019) · Zbl 1459.34153
[12] 2013:336, 13 · Zbl 1391.34112
[13] Sturm, C., Mémoire sur les équations différentialles du second ordre, J. Math. Pures Appl., 1, 106-186 (1836)
[14] Sun, Y. G.; Meng, F. W., Note on the paper of Džurina and Stavroulakis: “oscillation criteria for second-order delay differential equations” [Appl. Math. Comput. 140 (2003), no. 2-3, 445-453; mr1953915], Appl. Math. Comput., 174, 2, 1634-1641 (2006)
[15] Tiryaki, A., Oscillation criteria for a certain second-order nonlinear differential equations with deviating arguments, Electron. J. Qual. Theory Differ. Equ., 61, 1-11 (2009) · Zbl 1195.34100
[16] Wu, H.; Erbe, L.; Peterson, A., Oscillation of solution to second-order half-linear delay dynamic equations on time scales, Electron. J. Differential Equations, 71, 1-15 (2016) · Zbl 1345.34150
[17] Xu, R.; Meng, F., Some new oscillation criteria for second order quasi-linear neutral delay differential equations, Appl. Math. Comput., 182, 1, 797-803 (2006) · Zbl 1115.34341
[18] Ye, L.; Xu, Z., Oscillation criteria for second order quasilinear neutral delay differential equations, Appl. Math. Comput., 207, 2, 388-396 (2009) · Zbl 1168.34346
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.