×

Reflection and transmission of waves at the common interface of piezoelectric half-spaces with microstructure. (English) Zbl 1481.74379

Summary: The present article deals with the reflection and transmission of waves at an interface of piezoelectric (ALN & PZT-5T) half-spaces with microstructures. Unlike the classical piezoelectric material, in the considered media, five coupled waves (2 bulk and 3 surface) [namely the Quasi-longitudinal wave (QP), Quasi-transverse wave (QSV), Electric-acoustic wave (EA), P-type surface wave (SP) and S-type surface wave (SS)] are generated in response to an oblique incident Quasi plane wave. The main objective of this study is to investigate the influence of the characteristic length of microstructure, the inertial characteristic length and flexoelectric coefficients on the reflection and transmission coefficients. For this purpose, the linear algebraic equation, continuity conditions at the common interface are contracted. The linear system of equations comprising the reflection and transmission coefficients is derived, which is solved by using the Cramer’s rule. The consequence of this electromechanical phenomenon may be advantageous in certain engineering applications that involve smart nano-composites.

MSC:

74J05 Linear waves in solid mechanics
74A50 Structured surfaces and interfaces, coexistent phases
74F15 Electromagnetic effects in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Yousefi-Koma, A.; Zimcik, D. G., Applications of smart structures to aircraft for performance enhancement, Can. Aeronaut. Space J., 49, 4, 163-172 (2003)
[2] Manbachi, A.; Cobbold, R. S., Development and application of piezoelectric materials for ultrasound generation and detection, Ultrasound, 19, 4, 187-196 (2011)
[3] Lin, X. J.; Zhou, K. C.; Zhang, X. Y.; Zhang, D., Development, modeling and application of piezoelectric fiber composites, Trans. Nonferr. Metals Soc. Chin., 23, 1, 98-107 (2013)
[4] Giurgiutiu, V.; Lin, B.; Santoni-Bottai, G.; Cuc, A., Space application of piezoelectric wafer active sensors for structural health monitoring, J. Intell. Mater. Syst. Struct., 22, 12, 1359-1370 (2011)
[5] Li, M.; Yuan, J.; Guan, D.; Chen, W., Application of piezoelectric fiber composite actuator to aircraft wing for aerodynamic performance improvement, Sci. Chin. Technol. Sci., 54, 2, 395-402 (2011)
[6] Xu, X.; Cao, D.; Yang, H.; He, M., Application of piezoelectric transducer in energy harvesting in pavement, Int. J. Pavement Res. Technol., 11, 4, 388-395 (2018)
[7] Li, M.; Yuan, J.; Guan, D.; Chen, W., Application of piezoelectric fiber composite actuator to aircraft wing for aerodynamic performance improvement, Sci. Chin. Technol. Sci., 54, 2, 395-402 (2011)
[8] Khan, A.; Kim, H. S.; Youn, B. D., Modeling and assessment of partially debonded piezoelectric sensor in smart composite laminates, Int. J. Mech. Sci., 131, 26-36 (2017)
[9] Priya, S.; Song, H. C.; Zhou, Y.; Varghese, R.; Chopra, A.; Kim, S. G.; Polcawich, R. G., A review on piezoelectric energy harvesting: materials, methods, and circuits, Energy Harvesting Syst., 4, 1, 3-39 (2019)
[10] Mishra, S.; Unnikrishnan, L.; Nayak, S. K.; Mohanty, S., Advances in piezoelectric polymer composites for energy harvesting applications: a systematic review, Macromol. Mater. Eng., 304, 1, Article 1800463 pp. (2019)
[11] Qian, Z.; Jin, F.; Wang, Z.; Kishimoto, K., Love waves propagation in a piezoelectric layered structure with initial stresses, Acta Mech., 171, 1-2, 41-57 (2004) · Zbl 1062.74022
[12] Wang, X.; Jin, F., Investigation of properites of PIN-PMN-PT single crystal and its high performance application for a piezoelectric energy harvester, (Proceedings of the Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA) (2017)), 514-518
[13] Zhu, F.; Wang, B.; Qian, Z.; Kuznetsova, I.; Ma, T., Influence of surface conductivity on dispersion curves, mode shapes, stress, and potential for lamb waves propagating in piezoelectric plate, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 67, 4, 855-862 (2020)
[14] Huang, H.; Zhu, F.; Zhu, J.; Wang, B.; Qian, Z., A general approach for dispersion relations in multilayered structures with an arbitrary number of piezoelectric layers and elastic layers, Acta Mech., 231, 2, 489-502 (2020)
[15] Sahu, S. A.; Kumari, S.; Mondal, S.; Pankaj, K. K., Analysis of mechanical vibration (SH wave) in Piezo-composite plates, Mater. Res. Express, 6, 12, Article 125705 pp. (2019)
[16] Mondal, S.; Sahu, S. A.; Pankaj, K. K., Transference of Love-type waves in a bedded structure containing a functionally graded material and a porous piezoelectric medium, Appl. Math. Mech., 40, 8, 1083-1096 (2019) · Zbl 1422.74052
[17] Wang, X.; Li, P.; Jin, F., A generalised dynamic model of nanoscale surface acoustic wave sensors and its applications in Love wave propagation and shear-horizontal vibration, Appl. Math. Model., 75, 101-115 (2019) · Zbl 1481.74402
[18] Pang, Y.; Xu, C.; Ge, T.; Feng, W., Shear horizontal wave propagation along a periodic metal grating surface of a magneto-electro-elastic substrate, J. Appl. Phys., 125, 16, Article 165104 pp. (2019)
[19] Othmani, C.; Zhang, H., Lamb wave propagation in anisotropic multilayered piezoelectric laminates made of PVDF-θ° with initial stresses, Compos. Struct., 240, Article 112085 pp. (2020)
[20] Yang, G.; Yang, L.; Du, J.; Wang, J.; Yang, J., PN junctions with coupling to bending deformation in composite piezoelectric semiconductor fibers, Int. J. Mech. Sci., Article 105421 pp. (2020)
[21] Hu, S.; Shen, S., Electric field gradient theory with surface effect for nano-dielectrics, Comput. Mater. Contin. (CMC), 13, 1, 63 (2009)
[22] Hu, S.; Shen, S., Variational principles and governing equations in nano-dielectrics with the flexoelectric effect, Sci. Chin. Phys. Mech. Astron., 53, 8, 1497-1504 (2010)
[23] Shen, S.; Hu, S., A theory of flexoelectricity with surface effect for elastic dielectrics, J. Mech. Phys. Solid., 58, 5, 665-677 (2010) · Zbl 1244.78006
[24] Majdoub, M. S.; Sharma, P.; Cagin, T., Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect, Phys. Rev. B, 77, 12, Article 125424 pp. (2008)
[25] Liu, C.; Hu, S.; Shen, S., Effect of flexoelectricity on electrostatic potential in a bent piezoelectric nanowire, Smart Mater. Struct., 21, 11, Article 115024 pp. (2012)
[26] Zubko, P.; Catalan, G.; Tagantsev, A. K., Flexoelectric effect in solids, Annu. Rev. Mater. Res., 43, 387-421 (2013)
[27] Abdollahi, A.; Peco, C.; Millan, D.; Arroyo, M.; Arias, I., Computational evaluation of the flexoelectric effect in dielectric solids, J. Appl. Phys., 116, 9, Article 093502 pp. (2014)
[28] Kogan, S. M., Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals, Sov. Phys. Solid State, 5, 10, 2069-2070 (1964)
[29] Shu, L.; Wei, X.; Pang, T.; Yao, X.; Wang, C., Symmetry of flexoelectric coefficients in crystalline medium, J. Appl. Phys., 110, 10, Article 104106 pp. (2011)
[30] Zhang, X.; Liu, J.; Chu, M.; Chu, B., Flexoelectric piezoelectric metamaterials based on the bending of ferroelectric ceramic wafers, Appl. Phys. Lett., 109, 7, Article 072903 pp. (2016)
[31] Yao, D.; Zhou, H.; Wang, X. Y.; Hong, J. W., Characterization method of flexoelectric coefficient of piezoelectrics at nanoscale, (Proceedings of the Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA) (2017)), 325-330, IEEE
[32] Dehkordi, S. F.; Beni, Y. T., Electro-mechanical free vibration of single-walled piezoelectric/flexoelectric nano cones using consistent couple stress theory, Int. J. Mech. Sci., 128, 125-139 (2017)
[33] Georgiadis, H. G.; Vardoulakis, I.; Velgaki, E. G., Dispersive Rayleigh-wave propagation in microstructured solids characterised by dipolar gradient elasticity, J. Elast., 74, 1, 17-45 (2004) · Zbl 1058.74045
[34] Gourgiotis, P. A.; Georgiadis, H. G., Torsional and SH surface waves in an isotropic and homogenous elastic half-space characterised by the Toupin-Mindlin gradient theory, Int. J. Solid. Struct., 62, 217-228 (2015)
[35] Yang, W.; Liang, X.; Shen, S., Love waves in layered flexoelectric structures, Philos. Mag., 97, 33, 3186-3209 (2017)
[36] Nguyen, B. H.; Zhuang, X.; Rabczuk, T., Numerical model for the characterization of Maxwell-Wagner relaxation in piezoelectric and flexoelectric composite material, Comput. Struct., 208, 75-91 (2018)
[37] Mindlin, R. D., Micro-structure in linear elasticity, Arch. Rational Mech. Anal., 16, 51-78 (1964) · Zbl 0119.40302
[38] Yang, W.; Deng, Q.; Liang, X.; Shen, S., Lamb wave propagation with flexoelectricity and strain gradient elasticity considered, Smart Mater. Struct., 27, 8, Article 085003 pp. (2018)
[39] Chen, Y.; Yan, Z., Investigation of pull-in behaviours of a nanoswitch tuned by piezoelectric and flexoelectric effects, Int. J. Mech. Sci., 161, Article 105032 pp. (2019)
[40] Arani, A. G.; Pourjamshidian, M.; Arefi, M.; Arani, M. R., Application of nonlocal elasticity theory on the wave propagation of flexoelectric functionally graded (FG) timoshenko nano-beams considering surface effects and residual surface stress, Smart Struct. Syst., 23, 2, 141-153 (2019)
[41] Masoumi, A.; Amiri, A.; Talebitooti, R., Flexoelectric effects on wave propagation responses of piezoelectric nanobeams via nonlocal strain gradient higher order beam model, Mater. Res. Express, 6, 10, 1050d5 (2019)
[42] Guinovart-Sanjuán, D.; Vajravelu, K.; Rodríguez-Ramos, R.; Guinovart-Díaz, R.; Bravo-Castillero, J.; Lebon, F.; Merodio, J., Effective predictions of heterogeneous flexoelectric multilayered composite with generalised periodicity, Int. J. Mech. Sci., 181, Article 105755 pp. (2020)
[43] Pang, Y.; Wang, Y. S.; Liu, J. X.; Fang, D. N., Reflection and refraction of plane waves at the interface between piezoelectric and piezomagnetic media, Int. J. Eng. Sci., 46, 11, 1098-1110 (2008) · Zbl 1213.74176
[44] Pang, Y.; Liu, J. X., Reflection and transmission of plane waves at an imperfectly bonded interface between piezoelectric and piezomagnetic media, Eur. J. Mech. A/Solid., 30, 5, 731-740 (2011) · Zbl 1278.74087
[45] Abo-El-Nour, N.; Alsheikh, F. A., Reflection and refraction of plane quasi-longitudinal waves at an interface of two piezoelectric media under initial stresses, Arch. Appl. Mech., 79, 9, 843-857 (2009) · Zbl 1176.74098
[46] Abo-El-Nour, N.; Al-sheikh, F. A.; Al-Hossain, A. Y., The reflection phenomena of quasi-vertical transverse waves in piezoelectric medium under initial stresses, Meccanica, 47, 3, 731-744 (2012) · Zbl 1293.74247
[47] Li, Y.; Wei, P., Reflection and transmission of plane waves at the interface between two different dipolar gradient elastic half-spaces, Int. J. Solids Struct., 56, 194-208 (2015)
[48] Li, Y.; Wei, P., Reflection and transmission through a microstructured slab sandwiched by two half-spaces, Eur. J. Mech. A/Solid., 57, 1-17 (2016) · Zbl 1406.74058
[49] Jiao, F.; Wei, P.; Li, Y., Wave propagation through a flexoelectric piezoelectric slab sandwiched by two piezoelectric half-spaces, Ultrasonics, 82, 217-232 (2018)
[50] Jiao, F. Y.; Wei, P. J.; Li, Y. Q., Wave propagation in piezoelectric medium with the flexoelectric effect considered, J. Mech., 35, 1, 51-63 (2019)
[51] Gourgiotis, P. A.; Georgiadis, H. G.; Neocleous, I., On the reflection of waves in half-spaces of microstructured materials governed by dipolar gradient elasticity, Wave Motion, 50, 3, 437-455 (2013) · Zbl 1454.74075
[52] Guha, S.; Singh, A. K.; Das, A., Analysis on different types of imperfect interfaces between two dissimilar piezothermoelastic half-spaces on reflection and refraction phenomenon of plane waves, Wave. Random Complex Media, 31, 4, 1-30 (2021) · Zbl 1496.74084
[53] Goyal, S.; Sahu, S.; Mondal, S., Influence of imperfect bonding on the reflection and transmission of QP-wave at the interface of two functionally graded piezoelectric materials, Wave Motion, 92, Article 102431 pp. (2020) · Zbl 1524.74202
[54] Nirwal, S.; Sahu, S. A.; Baroi, J.; Saroj, P. K., Analysis of wave scattering in 3-layer piezo composite structure [Pb [Zr x Ti1-x] O3-ALN-Pb [Zr x Ti1-x] O3], Mech. Based Des. Struct. Mach., 49, 3, 1-22 (2021)
[55] Guo, X.; Peijun, W., Effects of initial stress on the reflection and transmission waves at the interface between two piezoelectric half spaces, Int. J. Solid. Struct., 51, 21-22, 3735-3751 (2014)
[56] Guo, X.; Wei, P.; Li, L.; Tang, Q., Influences of mechanically and dielectrically imperfect interfaces on the reflection and transmission waves between two piezoelectric half spaces, Int. J. Solids Struct., 63, 184-205 (2015)
[57] Yuan, X.; Jiang, Q.; Yang, F., Wave reflection and transmission in rotating and stressed pyroelectric half-planes, Appl. Math. Comput., 289, 281-297 (2016) · Zbl 1410.74026
[58] Ezzin, H.; Amor, M. B.; Ghozlen, M. H.B., Lamb waves propagation in layered piezoelectric/piezomagnetic plates, Ultrasonics, 76, 63-69 (2017)
[59] Ebrahimi, F.; Karimiasl, M.; Singhal, A., Magneto-electro-elastic analysis of piezoelectric-flexoelectric nanobeams rested on silica aerogel foundation, Eng. With Comput., 37, 1-8 (2021)
[60] Huang, H.; Zhu, F.; Zhu, J.; Wang, B.; Qian, Z., A general approach for dispersion relations in multilayered structures with an arbitrary number of piezoelectric layers and elastic layers, Acta Mech., 231, 2, 489-502 (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.