×

Coupled solid-fluid response of deep tunnels excavated in saturated rock masses with a time-dependent plastic behaviour. (English) Zbl 1481.74162

Summary: This article provides a general numerical approach for modelling the response of deep tunnels excavated in saturated time-dependent plastic rock masses, considering a coupled solid-fluid interaction and time-dependent plastic behaviour. In order to do that, a Burgers-viscoplastic strain-softening model has been developed and implemented into the finite element method software CODE_BRIGHT, and a coupled solid-fluid model is used to simulate the interaction between solid deformations and fluid flow. Parametric analyses are then performed to analyse the influence on the tunnelling response of different time-dependent models, different standstill times and different excavation rates. It has been observed that the time-dependent model selection is crucial to simulate the response of underground excavations. Additionally, the coupled solid-fluid results are significantly different from the purely mechanical ones. The liquid pressure build-up in the vicinity of the tunnel face and the overpressure dissipation with time due consolidation can be accounted for. Moreover, the higher the excavation rate, the larger build-up of liquid pressures occurs.

MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74L10 Soil and rock mechanics

Software:

FLAC3D; Code_Bright
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Song, F.; Rodriguez-Dono, A.; Olivella, S., Hydro-mechanical modelling and analysis of multi-stage tunnel excavations using a smoothed excavation method, Comput. Geotech., 135, Article 104150 pp. (2021)
[2] Wu, H.; Vilarrasa, V.; De Simone, S.; Saaltink, M.; Parisio, F., Analytical solution to assess the induced seismicity potential of faults in pressurized and depleted reservoirs, J. Geophys. Res. Solid Earth., 126, Article e2020JB020436 pp. (2021)
[3] Vilarrasa, V.; Carrera, J.; Olivella, S., Hydromechanical characterization of CO2 injection sites, Int. J. Greenh. Gas Control., 19, 665-677 (2013)
[4] Zhou, X. P.; Wang, Y. T.; Shou, Y. D., Hydromechanical bond-based peridynamic model for pressurized and fluid-driven fracturing processes in fissured porous rocks, Int. J. Rock Mech. Min. Sci., 132, Article 104383 pp. (2020)
[5] Wu, H.; Bai, B.; Li, X., An advanced analytical solution for pressure build-up during CO2 injection into infinite saline aquifers: The role of compressibility, Adv. Water Resour., 112, 95-105 (2018)
[6] Damjanac, B.; Fairhurst, C., Evidence for a long-term strength threshold in crystalline rock, Rock Mech. Rock Eng., 43, 513-531 (2010)
[7] Eberhardt, E.; Stimpson, B.; Stead, D., The influence of mineralogy on the initiation of microfractures in granite, (9th ISRM Congr., International Society for Rock Mechanics and Rock Engineering (1999))
[8] Fabre, G.; Pellet, F., Creep and time-dependent damage in argillaceous rocks, Int. J. Rock Mech. Min. Sci., 43, 950-960 (2006)
[9] Song, F.; Rodriguez-Dono, A.; Olivella, S.; Zhong, Z., Analysis and modelling of longitudinal deformation profiles of tunnels excavated in strain-softening time-dependent rock masses, Comput. Geotech., 125, Article 103643 pp. (2020)
[10] Alejano, L. R.; Rodríguez-Dono, A.; Veiga, M., Plastic radii and longitudinal deformation profiles of tunnels excavated in strain-softening rock masses, Tunn. Undergr. Sp. Technol., 30, 169-182 (2012)
[11] Arzúa, J.; Alejano, L. R., Dilation in granite during servo-controlled triaxial strength tests, Int. J. Rock Mech. Min. Sci., 61, 43-56 (2013)
[12] Paraskevopoulou, C., Time-dependency of rocks and implications associated with tunnelling (2016), Queen’s University
[13] Song, F.; Rodriguez-Dono, A., Numerical solutions for tunnels excavated in strain-softening rock masses considering a combined support system, Appl. Math. Model., 92, 905-930 (2021) · Zbl 1481.74546
[14] Nam, S. W.; Bobet, A., Radial deformations induced by groundwater flow on deep circular tunnels, Rock Mech. Rock Eng., 40, 23 (2007)
[15] Prassetyo, S. H.; Gutierrez, M., Effect of transient coupled hydro-mechanical response on the longitudinal displacement profile of deep tunnels in saturated ground, Tunn. Undergr. Sp. Technol., 75, 11-20 (2018)
[16] Yuan, S. C.; Harrison, J. P., Development of a hydro-mechanical local degradation approach and its application to modelling fluid flow during progressive fracturing of heterogeneous rocks, Int. J. Rock Mech. Min. Sci., 42, 961-984 (2005)
[17] Lin, L.; Chen, F.; Lu, Y.; Li, D., Complex variable solutions for tunnel excavation at great depth in visco-elastic geomaterial considering the three-dimensional effects of tunnel advance, Appl. Math. Model., 82, 700-730 (2020) · Zbl 1481.74719
[18] Paraskevopoulou, C.; Diederichs, M., Analysis of time-dependent deformation in tunnels using the Convergence-Confinement Method, Tunn. Undergr. Sp. Technol., 71, 62-80 (2018)
[19] Sakurai, S., Modeling strategy for jointed rock masses reinforced by rock bolts in tunneling practice, Acta Geotech, 5, 121-126 (2010)
[20] Shin, J. H.; Addenbrooke, T. I.; Potts, D. M., A numerical study of the effect of groundwater movement on long-term tunnel behaviour, Geotechnique, 52, 391-403 (2002)
[21] Song, F.; Wang, H.; Jiang, M., Analytically-based simplified formulas for circular tunnels with two liners in viscoelastic rock under anisotropic initial stresses, Constr. Build. Mater., 175, 746-767 (2018)
[22] Song, F.; Wang, H.; Jiang, M., Analytical solutions for lined circular tunnels in viscoelastic rock considering various interface conditions, Appl. Math. Model., 55, 109-130 (2018) · Zbl 1480.74222
[23] Unlu, T.; Gercek, H., Effect of Poisson’s ratio on the normalized radial displacements occurring around the face of a circular tunnel, Tunn. Undergr. Sp. Technol., 18, 547-553 (2003)
[24] Vlachopoulos, N.; Diederichs, M. S., Improved longitudinal displacement profiles for convergence confinement analysis of deep tunnels, Rock Mech. Rock Eng., 42, 131-146 (2009)
[25] Vu, T. M.; Sulem, J.; Subrin, D.; Monin, N., Semi-analytical solution for stresses and displacements in a tunnel excavated in transversely isotropic formation with non-linear behavior, Rock Mech. Rock Eng., 46, 213-229 (2013)
[26] Wang, H. N.; Jiang, M. J.; Zhao, T.; Zeng, G. S., Viscoelastic solutions for stresses and displacements around non-circular tunnels sequentially excavated at great depths, Acta Geotech, 14, 111-139 (2019)
[27] Wang, H. N.; Nie, G. H., Analytical expressions for stress and displacement fields in viscoelastic axisymmetric plane problem involving time-dependent boundary regions, Acta Mech, 210, 315-330 (2010) · Zbl 1397.74038
[28] Zareifard, M. R., An analytical solution for design of pressure tunnels considering seepage loads, Appl. Math. Model., 62, 62-85 (2018) · Zbl 1460.74064
[29] Bobet, A., Elastic solution for deep tunnels. Application to excavation damage zone and rockbolt support, Rock Mech. Rock Eng., 42, 147-174 (2009)
[30] Cai, M., Influence of stress path on tunnel excavation response-Numerical tool selection and modeling strategy, Tunn. Undergr. Sp. Technol., 23, 618-628 (2008)
[31] Chen, F.; Lin, L.; Li, D., Analytic solutions for twin tunneling at great depth considering liner installation and mutual interaction between geomaterial and liners, Appl. Math. Model., 73, 412-441 (2019) · Zbl 1481.74537
[32] Debernardi, D.; Barla, G., New viscoplastic model for design analysis of tunnels in squeezing conditions, Rock Mech. Rock Eng., 42, 259 (2009)
[33] Do, D. P.; Tran, N. T.; Mai, V. T.; Hoxha, D.; Vu, M. N., Time-dependent reliability analysis of deep tunnel in the viscoelastic burger rock with sequential installation of liners, Rock Mech. Rock Eng., 53, 1259-1285 (2020)
[34] Galli, G.; Grimaldi, A.; Leonardi, A., Three-dimensional modelling of tunnel excavation and lining, Comput. Geotech., 31, 171-183 (2004)
[35] Alejano, L. R.; Alonso, E.; Rodriguez-Dono, A.; Fernandez-Manin, G., Application of the convergence-confinement method to tunnels in rock masses exhibiting Hoek-Brown strain-softening behaviour, Int. J. Rock Mech. Min. Sci., 47, 150-160 (2010)
[36] Carranza-Torres, C.; Fairhurst, C., Application of the convergence-confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion, Tunn. Undergr. Sp. Technol., 15, 187-213 (2000)
[37] Corbetta, F.; Bernaud, D.; Minh, D. N., Contribution à la méthode convergence-confinement par le principe de la similitude, Rev. Française Géotechnique., 5-11 (1991)
[38] Panet, M., Understanding deformations in tunnels, Compr. Rock Eng., 1, 663-690 (1993)
[39] Panet, M., Le calcul des tunnels par la méthode convergence-confinement (1995), Presses ENPC
[40] Chern, J. C.; Shiao, F. Y.; Yu, C. W., An empirical safety criterion for tunnel construction, (Proc. Reg. Symp. Sediment. Rock Eng. Taipei. Proc. Reg. Symp. Sediment. Rock Eng. Taipei, Taiwan (1998)), 222-227
[41] Wang, H. N.; Song, F.; Zhao, T.; Jiang, M. J., Solutions for lined circular tunnels sequentially constructed in rheological rock subjected to non-hydrostatic initial stresses, Eur. J. Environ. Civ. Eng., 1-33 (2020)
[42] Itasca, FLAC3D version 3. Fast Lagrangian Analysis of Continua, 3D Version., (2007).
[43] Olivella S., Vaunat J., Rodriguez-Dono A., CODE_BRIGHT USER’S GUIDE https://deca.upc.edu/en/projects/code_bright
[44] Prassetyo, S. H., Hydro-mechanical analysis of tunneling in saturated ground using a novel and efficient sequential coupling technique (2017), Colorado School of Mines
[45] Prassetyo, S. H.; Gutierrez, M., Hydro-mechanical response of excavating tunnel in deep saturated ground, Int. J. Geo-Engineering., 11, 1-18 (2020)
[46] Olivella, S., Nomsothermal multiphase flow of brine and gas through saline media (1995), Universitat Politècnica de Catalunya (UPC)
[47] Olivella, S.; Gens, A.; Carrera, J.; Alonso, E. E., Numerical formulation for a simulator (CODE_BRIGHT) for the coupled analysis of saline media, Eng. Comput. (1996) · Zbl 0983.74536
[48] Chu, Z.; Wu, Z.; Liu, B.; Liu, Q., Coupled analytical solutions for deep-buried circular lined tunnels considering tunnel face advancement and soft rock rheology effects, Tunn. Undergr. Sp. Technol., 94, Article 103111 pp. (2019)
[49] Sulem, J.; Panet, M.; Guenot, A., An analytical solution for time-dependent displacements in a circular tunnel, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 155-164 (1987)
[50] Sandrone, F.; Labiouse, V., Analysis of the evolution of road tunnels equilibrium conditions with a convergence-confinement approach, Rock Mech. Rock Eng., 43, 201-218 (2010)
[51] Sterpi, D.; Gioda, G., Visco-plastic behaviour around advancing tunnels in squeezing rock, Rock Mech. Rock Eng., 42, 319-339 (2009)
[52] Dubey, R. K.; Gairola, V. K., Influence of structural anisotropy on creep of rocksalt from Simla Himalaya, India: An experimental approach, J. Struct. Geol., 30, 710-718 (2008)
[53] Oyanguren, P. Ramírez, A study of longwall mining in potash (1966), University of Newcastle
[54] Alejano, L. R.; Rodriguez-Dono, A.; Alonso, E.; Manín, G. F.-, Ground reaction curves for tunnels excavated in different quality rock masses showing several types of post-failure behaviour, Tunn. Undergr. Sp. Technol., 24, 689-705 (2009)
[55] Hoek, E.; Brown, E. T., Practical estimates of rock mass strength, Int. J. Rock Mech. Min. Sci., 34, 1165-1186 (1997)
[56] Alonso, E.; Alejano, L. R.; Varas, F.; Fdez-Manin, G.; Carranza-Torres, C., Ground response curves for rock masses exhibiting strain-softening behaviour, Int. J. Numer. Anal. Methods Geomech., 27, 1153-1185 (2003) · Zbl 1098.74039
[57] Wang, H. N.; Li, Y.; Ni, Q.; Utili, S.; Jiang, M. J.; Liu, F., Analytical solutions for the construction of deeply buried circular tunnels with two liners in rheological rock, Rock Mech. Rock Eng., 46, 1481-1498 (2013)
[58] Weng, M. C.; Tsai, L. S.; Liao, C. Y.; Jeng, F. S., Numerical modeling of tunnel excavation in weak sandstone using a time-dependent anisotropic degradation model, Tunn. Undergr. Sp. Technol., 25, 397-406 (2010)
[59] Starfield, A. M.; Cundall, P. A., Towards a methodology for rock mechanics modelling, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 99-106 (1988), Elsevier
[60] Mánica, M. A., Analysis of underground excavations in argillaceous hard soils: weak rocks, Universitat Politècnica de Catalunya (UPC) (2018)
[61] Perzyna, P., Fundamental problems in viscoplasticity, Adv. Appl. Mech., 243-377 (1966)
[62] Rodriguez-Dono, A., Studies on undergrond excavations in rock masses (2011), Universidade de Vigo
[63] Hoek, E.; Carranza, C.; Corkum, B., Hoek-Brown failure criterion (2002), Narms-Tac
[64] Lee, Y. K.; Pietruszczak, S., A new numerical procedure for elasto-plastic analysis of a circular opening excavated in a strain-softening rock mass, Tunn. Undergr. Sp. Technol., 23, 588-599 (2008)
[65] Zou, J.; Li, C.; Wang, F., A new procedure for ground response curve (GRC) in strain-softening surrounding rock, Comput. Geotech., 89, 81-91 (2017)
[66] Zhang, Q.; Jiang, B. S.; Wu, X. S.; Zhang, H. Q.; Han, L. J., Elasto-plastic coupling analysis of circular openings in elasto-brittle-plastic rock mass, Theor. Appl. Fract. Mech., 60, 60-67 (2012)
[67] Barla, G.; Borgna, S., Numerical modelling of squeezing behaviour in tunnels (2000), Associazione Geotecnica Italiana (AGI
[68] Zienkiewicz, O. C.; Taylor, R. L., The finite element method fifth edition: Solid Mechanics, Butterworth-heinemann (2000) · Zbl 0991.74003
[69] Abbo, A. J.; Sloan, S. W., A smooth hyperbolic approximation to the Mohr-Coulomb yield criterion, Comput. Struct., 54, 427-441 (1995) · Zbl 0877.73015
[70] Abbo, A. J.; Lyamin, A. V.; Sloan, S. W.; Hambleton, J. P., A C2 continuous approximation to the Mohr-Coulomb yield surface, Int. J. Solids Struct., 48, 3001-3010 (2011)
[71] Alonso, E. E.; Olivella, S.; Pinyol, N. M., A review of Beliche Dam, Géotechnique., 55, 267-285 (2005)
[72] Günther, R.-M.; Salzer, K.; Popp, T.; Lüdeling, C., Steady-state creep of rock salt: improved approaches for lab determination and modelling, Rock Mech. Rock Eng., 48, 2603-2613 (2015)
[73] Barla, G.; Bonini, M.; Debernardi, D., Time dependent deformations in squeezing tunnels, ISSMGE Int. J. Geoengin. Case Hist., 2, 40-65 (2010)
[74] Sharifzadeh, M.; Tarifard, A.; Moridi, M. A., Time-dependent behavior of tunnel lining in weak rock mass based on displacement back analysis method, Tunn. Undergr. Sp. Technol., 38, 348-356 (2013)
[75] Barla, G.; Debernardi, D.; Sterpi, D., Time-dependent modeling of tunnels in squeezing conditions, Int. J. Geomech., 12, 697-710 (2012)
[76] Bonini, M.; Barla, G., The Saint Martin La Porte access adit (Lyon-Turin Base Tunnel) revisited, Tunn. Undergr. Sp. Technol., 30, 38-54 (2012)
[77] Giraud, A.; Rousset, G., Time-dependent behaviour of deep clays, Eng. Geol., 41, 181-195 (1996)
[78] Li, X., Stress and displacement fields around a deep circular tunnel with partial sealing, Comput. Geotech., 24, 125-140 (1999)
[79] Olivella, S.; Gens, A., A constitutive model for crushed salt, Int. J. Numer. Anal. Methods Geomech., 26, 719-746 (2002) · Zbl 0995.74504
[80] Sainoki, A.; Tabata, S.; Mitri, H. S.; Fukuda, D.; Kodama, J., Time-dependent tunnel deformations in homogeneous and heterogeneous weak rock formations, Comput. Geotech., 92, 186-200 (2017)
[81] Gens, A.; Vaunat, J.; Garitte, B.; Wileveau, Y., In situ behaviour of a stiff layered clay subject to thermal loading: observations and interpretation, Géotechnique, 57, 2, 207-228 (2007)
[82] Song, F., Modelling time-dependent plastic behaviour of geomaterials, Universitat Politècnica de Catalunya (UPC) (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.