On the pure jump nature of crack growth for a class of pressure-sensitive elasto-plastic materials. (English) Zbl 07418791

Summary: In the framework of a model for the quasistatic crack growth in pressure-sensitive elasto-plastic materials in the planar case, we study the properties of the length \(\ell(t)\) of the crack as a function of time. We prove that, under suitable technical assumptions on the crack path, the monotone function \(\ell\) is a pure jump function.


74A45 Theories of fracture and damage
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
49S05 Variational principles of physics
49K10 Optimality conditions for free problems in two or more independent variables
Full Text: DOI


[1] Ambrosio, L.; Coscia, A.; Dal Maso, G., Fine properties of functions with bounded deformation, Arch. Ration. Mech. Anal., 139, 201-238 (1997) · Zbl 0890.49019
[2] Barés, J.; Barbier, L.; Bonamy, D., Crackling versus continuumlike dynamics in brittle fracture, Phys. Rev. Lett., 111, Article 054301 pp. (2013)
[3] Bonamy, D., Dynamics of cracks in disordered materials, C.R. Phys., 18, 297-313 (2017)
[4] Brach, S.; Tanné, E.; Bourdin, B.; Bhattacharya, K., Phase-field study of crack nucleation and propagation in elastic-perfectly plastic bodies, Comput. Methods Appl. Mech. Engrg., 353, 44-65 (2019) · Zbl 1441.74201
[5] Dal Maso, G.; Demyanov, A.; DeSimone, A., Quasistatic evolution problems for pressure-sensitive plastic materials, Milan J. Math., 75, 117-134 (2007) · Zbl 1225.74016
[6] Dal Maso, G.; Heltai, L., A numerical study of the jerky crack growth in elastoplastic materials with localized plasticity, J. Convex Anal., 28, 535-548 (2021) · Zbl 1471.65183
[7] Dal Maso, G.; Toader, R., Quasistatic crack growth in elasto-plastic materials: the two-dimensional case, Arch. Ration. Mech. Anal., 196, 867-906 (2010) · Zbl 1304.74005
[8] Dal Maso, G.; Toader, R., On the jerky crack growth in elastoplastic materials, Calc. Var. PDE, 59 (2020), paper 107 · Zbl 1443.74255
[9] Descatha, Y.; Ledermann, P.; Devaux, J. C.; Mudry, F.; Pineau, A.; Lautridou, J. C., Experimental and numerical study of the different stages in ductile rupture - application to crack initiation and stable crack growth, (Three-Dimensional Constitutive Relations and Ductile Fracture (1981), North-Holland: North-Holland Amsterdam), 185-205
[10] Drugan, W. J.; Rice, J. R.; Sham, T. L., Asymptotic analysis of growing plane strain tensile cracks in elastic-ideally plastic solids, J. Mech. Phys. Solids, 30, 447-473 (1982) · Zbl 0496.73086
[11] Dugdale, D. S., Yielding of steel sheets containing slits, J. Mech. Phys. Solids, 8, 100-104 (1960)
[12] Dunford, N.; Schwartz, J. T., Linear operators. Part I. General theory. With the assistance of William G. Bade and Robert G. Bartle. Reprint of the 1958 original (1988), Wiley Classics Library. A Wiley-Interscience Publication. John Wiley & Sons, Inc.: Wiley Classics Library. A Wiley-Interscience Publication. John Wiley & Sons, Inc. New York · Zbl 0635.47001
[13] Freund, L. B., (Dynamic Fracture Mechanics. Dynamic Fracture Mechanics, Cambridge Monographs on Mechanics and Applied Mathematics (1990), Cambridge Univ. Press: Cambridge Univ. Press Cambridge) · Zbl 0712.73072
[14] Goffman, C.; Serrin, J., Sublinear functions of measures and variational integrals, Duke Math. J., 31, 159-178 (1964) · Zbl 0123.09804
[15] Hull, D., Fractography: Observing, Measuring and Interpreting Fracture Surface Topography (1999), Cambridge University Press
[16] Hutchinson, J. W., A Course on Nonlinear Fracture Mechanics (1989), Department of Solid Mechanics, Techn. University of Denmark
[17] G.R. Irwin, Plastic zone near a crack tip and fracture toughness, in: Proceedings of the seventh Sagamore Ordnance Material Conference, IV63-IV78, 1960.
[18] Irwin, G. R., Linear fracture mechanics, fracture transition, and fracture control, Eng. Fract. Mech., 1, 241-257 (1968)
[19] Luo, X. F.; Hwang, K., Steady growth of cracks in compressible elastic-plastic media, Acta Mech. Sin. (Engl. Ed.), 5, 60-69 (1989)
[20] Mielke, A., Evolution of rate-independent systems, (Dafermos, C. M.; Feireisl, E., Evolutionary Equations. Vol. II. Evolutionary Equations. Vol. II, Handbook of Differential Equations (2005), Elsevier/North-Holland: Elsevier/North-Holland Amsterdam), 461-559 · Zbl 1120.47062
[21] Mielke, A.; Roubíček, T., Rate-independent systems, (Theory and Application. Theory and Application, Applied Mathematical Sciences, vol. 193 (2015), Springer: Springer New York) · Zbl 1339.35006
[22] Rice, J. R., The elastic-plastic mechanics of crack extension, Int. J. Fract. Mech., 4, 41-47 (1968)
[23] Rice, J. R., Mathematical analysis in the mechanics of fracture, (Liebowitz, H., Chapter 3 in Fracture: An Advanced Treatise (Vol 2, Mathematical Fundamentals) (1968), Academic Press: Academic Press N.Y), 191-311
[24] Rice, J. R.; Sorensen, E. P., Continuing crack-tip deformation and fracture for plane-strain crack growth in elastic-plastic solids, J. Mech. Phys. Solids, 26, 163-186 (1978) · Zbl 0384.73066
[25] Rockafellar, R. T., Convex Analysis (1970), Princeton University Press: Princeton University Press Princeton · Zbl 0229.90020
[26] Simha, N. K.; Fischer, F. D.; Kolednik, O.; Chen, C. R., Inhomogeneity effects on the crack driving force in elastic and elastic plastic materials, J. Mech. Phys. Solids, 51, 209-240 (2003) · Zbl 1100.74626
[27] Stumpf, H.; Le, K. C., Variational formulation of the crack problem for an elastoplastic body at finite strain, Z. Angew. Math. Mech., 72, 387-396 (1992) · Zbl 0767.73056
[28] Temam, R., Problèmes mathématiques en plasticité (1983), Gauthier-Villars: Gauthier-Villars Paris · Zbl 0547.73026
[29] Wnuk, M. P., Quasi-static extension of a tensile crack contained in a viscoelastic-plastic solid, J. Appl. Mech., 41, 234-242 (1974) · Zbl 0292.73059
[30] Zhu, X. K.; Chao, Y. J., Constraint effects on crack-tip fields in elastic-perfectly plastic materials, J. Mech. Phys. Solids, 49, 363-399 (2001) · Zbl 0997.74052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.