×

Second order causal hydrodynamics in Eckart frame: using gradient expansion scheme. (English) Zbl 1479.83112


MSC:

83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
85A04 General questions in astronomy and astrophysics
76E20 Stability and instability of geophysical and astrophysical flows
85A15 Galactic and stellar structure
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Heinz U and Snellings R 2013 Collective flow and viscosity in relativistic heavy-ion collisions Annu. Rev. Nucl. Part. Sci.63 123
[2] Gale C, Jeon S and Schenke B 2013 Hydrodynamic modeling of heavy-ion collisions Int. J. Mod. Phys. A 28 1340011
[3] Romatschke P and Romatschke U 2017 Relativistic fluid dynamics in and out of equilibrium Cambridge Monographs on Mathematical Physics (Cambridge: Cambridge University Press) (https://doi.org/10.1017/9781108651998)
[4] Zimdahl W 1996 Bulk viscous cosmology Phys. Rev. D 53 5483
[5] Maartens R 1996 Causal thermodynamics in relativity (arXiv:astro-ph/9609119)
[6] Baier R, Lahiri S and Romatschke P 2019 Ricci cosmology (arXiv:1907.02974 [gr-qc])
[7] Font J A and Daigne F 2002 The runaway instability of thick discs around black holes. 1. The constant angular momentum case Mon. Not. R. Astron. Soc.334 383
[8] Euler L 1755 Principes generaux du mouvement des fluides Mem. Acad. Sci. Berlin11 (printed in 1757)
[9] Euler L 1907 Oper. Omnia ser.2 12 54-91, E226
[10] Navier C L M H 1822 Memoire sur les lois du mouvement des fluides Mem. Acad. Sci. Inst. France6 389-440
[11] Stokes G G 1845 On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids Trans. Camb. Phil. Soc.8 287-319
[12] Eckart C 1940 Phys. Rev.58 919 · Zbl 0027.03107
[13] Landau L D and Lifshitz E M 1987 Fluid Mechanics(Course of Theoretical Physics vol 6) 2nd edn (Portsmouth, NH: Heinemann)
[14] Hiscock W A and Lindblom L 1985 Generic instabilities in first order dissipative relativistic fluids Phys. Rev. D 31 725
[15] Muller I 1967 Z. Phys.198 329
[16] Israel W 1976 Non-stationary irreversible thermodynamics: a causal relativistic theory Ann. Phys., NY100 310
[17] Israel W 1981 Thermodynamics of relativistic systems Physica A 106 209
[18] Hiscock W A and Lindblom L 1983 Ann. Phys., NY151 466 · Zbl 0536.76126
[19] Hiscock W A and Lindblom L 1987 Phys. Rev. D 35 3723
[20] Hiscock W A and Lindblom L 1988 Phys. Lett. A 131 509
[21] Baier R, Romatschke P, Son D T, Starinets A O and Stephanov M A 2008 Relativistic viscous hydrodynamics, conformal invariance, and holography J. High Energy Phys.JHEP04(2008) 100 · Zbl 1246.81352
[22] Romatschke P 2010 New developments in relativistic viscous hydrodynamics Int. J. Mod. Phys. E 19 1
[23] Muronga A 2004 Causal theories of dissipative relativistic fluid dynamics for nuclear collisions Phys. Rev. C 69 034903
[24] Romatschke P 2010 Relativistic viscous fluid dynamics and non-equilibrium entropy Class. Quantum Grav.27 025006 · Zbl 1184.83026
[25] Muronga A 2002 Second order dissipative fluid dynamics for ultra-relativistic nuclear collisions Phys. Rev. Lett.88 062302
[26] Muronga A 2002 Phys. Rev. Lett.89 159901 (erratum)
[27] Erdmenger J, Haack M, Kaminski M and Yarom A 2009 Fluid dynamics of R-charged black holes J. High Energy Phys.JHEP01(2009) 055 · Zbl 1243.83037
[28] Moore G D and Sohrabi K A 2011 Kubo formulae for second-order hydrodynamic coefficients Phys. Rev. Lett.106 122302
[29] Nakamura A and Sakai S 2005 Transport coefficients of gluon plasma Phys. Rev. Lett.94 072305
[30] Kovtun P, Son D T and Starinets A O 2005 Viscosity in strongly interacting quantum field theories from black hole physics Phys. Rev. Lett.94 111601
[31] Denicol G S, Noronha J, Niemi H and Rischke D H 2011 Determination of the shear viscosity relaxation time at weak and strong coupling J. Phys. G: Nucl. Part. Phys.38 124177
[32] Peitz J and Appl S 1998 3 + 1 formulation of non-ideal hydrodynamics Mon. Not. R. Astron. Soc.296 231-44
[33] Peitz J and Appl S 1999 Dissipative fluid dynamics in the 3 + 1 formalism Class. Quantum Grav.16 979-89 · Zbl 0939.83029
[34] Akiyama K et al and (Event Horizon Telescope Collaboration) 2019 First M87 event horizon telescope results. I. The shadow of the supermassive black hole Astrophys. J.875 L1
[35] Gammie C F and Popham R 1998 Advection dominated accretion flows in the Kerr metric: 1. Basic equations Astrophys. J.498 313
[36] Lahiri S and Lmmerzahl C 2019 A toy model of viscous relativistic geometrically thick disk in Schwarzschild geometry (arXiv:1909.10381 [gr-qc])
[37] Tolman R C 1934 Relativity, Thermodynamics, and Cosmology (Oxford: Clarendon) · JFM 60.0757.06
[38] Oppenheimer J R and Volkoff G M 1939 On massive neutron cores Phys. Rev.55 374-81 · Zbl 0020.28501
[39] Monnai A 2019 Landau and Eckart frames for relativistic fluids in nuclear collisions Phys. Rev. C 100 014901
[40] Bhattacharyya S 2012 Constraints on the second order transport coefficients of an uncharged fluid J. High Energy Phys.JHEP07(2012) 104
[41] Tawfik A and Harko T 2012 Quark-Hadron phase transitions in viscous early universe Phys. Rev. D 85 084032
[42] Tawfik A, Wahba M, Mansour H and Harko T 2011 Viscous Quark-Gluon plasma in the early universe Ann. Phys., NY523 194 · Zbl 1213.83164
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.