×

Second order finite volume scheme for Euler equations with gravity which is well-balanced for general equations of state and grid systems. (English) Zbl 07418030

Summary: We develop a second order well-balanced finite volume scheme for compressible Euler equations with a gravitational source term. The well-balanced property holds for arbitrary hydrostatic solutions of the corresponding Euler equations without any restriction on the equation of state. The hydrostatic solution must be known a priori either as an analytical formula or as a discrete solution at the grid points. The scheme can be applied to curvilinear meshes and in combination with any consistent numerical flux function and time stepping routines. These properties are demonstrated on a range of numerical tests.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76N15 Gas dynamics (general theory)

Software:

HE-E1GODF; Chebfun
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein, and B. Perthame. A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM Journal on Scientific Computing, 25(6):2050-2065, 2004. · Zbl 1133.65308
[2] W. Barsukow, P. V. F. Edelmann, C. Klingenberg, F. Miczek, and F. K. Röpke. A numerical scheme for the compressible low-Mach number regime of ideal fluid dynamicsroe. Journal of Scientific Computing, pages 1-24, 2017. · Zbl 1459.65166
[3] N. Botta, R. Klein, S. Langenberg, and S. Lützenkirchen. Well balanced finite volume meth-ods for nearly hydrostatic flows. Journal of Computational Physics, 196(2):539-565, 2004. · Zbl 1109.86304
[4] D. A. Calhoun, C. Helzel, and R. J. Leveque. Logically Rectangular Grids and Finite Volume Methods for PDEs in Circular and Spherical Domains. SIAM Review, 50:723-752, Jan. 2008. · Zbl 1155.65061
[5] P. Cargo and A. LeRoux. A well balanced scheme for a model of atmosphere with gravity. Comptes Rendus de l’Academie des Sciences Serie I -Mathematique, 318(1):73-76, 1994.
[6] S. Chandrasekhar. An introduction to the study of stellar structure, volume 2. Courier Corpo-ration, 1958. · Zbl 0022.19207
[7] P. Chandrashekar and C. Klingenberg. A second order well-balanced finite volume scheme for Euler equations with gravity. SIAM Journal on Scientific Computing, 37(3):B382-B402, 2015. · Zbl 1320.76078
[8] P. Chandrashekar and M. Zenk. Well-balanced nodal discontinuous Galerkin method for Euler equations with gravity. Journal of Scientific Computing, pages 1-32, 2017. · Zbl 1462.65180
[9] A. Chertock, S. Cui, A. Kurganov, Ş. N.Özcan, and E. Tadmor. Well-balanced schemes for the Euler equations with gravitation: Conservative formulation using global fluxes. Journal of Computational Physics, 2018. · Zbl 1381.76316
[10] P. Colella, M. R. Dorr, J. A. Hittinger, and D. F. Martin. High-order, finite-volume methods in mapped coordinates. Journal of Computational Physics, 230(8):2952-2976, 2011. · Zbl 1218.65119
[11] V. Desveaux, M. Zenk, C. Berthon, and C. Klingenberg. A well-balanced scheme for the Euler equation with a gravitational potential. In Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects, pages 217-226. Springer, 2014. · Zbl 1304.76027
[12] V. Desveaux, M. Zenk, C. Berthon, and C. Klingenberg. A well-balanced scheme to cap-ture non-explicit steady states in the Euler equations with gravity. International Journal for Numerical Methods in Fluids, 81(2):104-127, 2016. · Zbl 1382.65310
[13] V. Desveaux, M. Zenk, C. Berthon, and C. Klingenberg. Well-balanced schemes to capture non-explicit steady states: Ripa model. Mathematics of Computation, 85(300):1571-1602, 2016. · Zbl 1382.65310
[14] T. A. Driscoll, N. Hale, and L. N. Trefethen. Chebfun Guide. Pafnuty Publications, Oxford, 2014.
[15] P. V. F. Edelmann. Coupling of Nuclear Reaction Networks and Hydrodynamics for Application in Stellar Astrophysics. Dissertation, Technische Universität München, 2014.
[16] D. Ghosh and E. M. Constantinescu. Well-balanced formulation of gravitational source terms for conservative finite-difference atmospheric flow solvers. In 7th AIAA Atmospheric and Space Environments Conference, page 2889, 2015.
[17] D. Ghosh and E. M. Constantinescu. Well-balanced, conservative finite difference algorithm for atmospheric flows. AIAA Journal, 2016.
[18] R. Käppeli and S. Mishra. Well-balanced schemes for the Euler equations with gravitation. Journal of Computational Physics, 259:199-219, 2014. · Zbl 1349.76345
[19] R. Käppeli and S. Mishra. A well-balanced finite volume scheme for the Euler equations with gravitation-the exact preservation of hydrostatic equilibrium with arbitrary entropy stratification. Astronomy & Astrophysics, 587:A94, 2016.
[20] K. Kifonidis and E. Müller. On multigrid solution of the implicit equations of hydrodynam-ics. experiments for the compressible Euler equations in general coordinates. Astronomy & Astrophysics, 544:A47, Aug. 2012.
[21] R. Kippenhahn, A. Weigert, and A. Weiss. Stellar structure and evolution, volume 282. Springer, 1990. · Zbl 1254.85001
[22] K. Krämer. Physikalische Grundlagen der Maßeinheiten: Mit Einem Anhangüber Fehlerrechnung. Springer-Verlag, 2013.
[23] R. LeVeque and D. Bale. Wave propagation methods for conservation laws with source terms. Birkhauser Basel, pages pp. 609-618, 1999. · Zbl 0927.35062
[24] R. J. LeVeque. A well-balanced path-integral f-wave method for hyperbolic problems with source terms. Journal of Scientific Computing, 48(1):209-226, 2011. · Zbl 1221.65233
[25] G. Li and Y. Xing. Well-balanced discontinuous Galerkin methods for the Euler equations under gravitational fields. Journal of Scientific Computing, 67(2):493-513, 2016. · Zbl 1381.76184
[26] G. Li and Y. Xing. Well-balanced discontinuous Galerkin methods with hydrostatic recon-struction for the Euler equations with gravitation. Journal of Computational Physics, 352:445-462, 2018. · Zbl 1375.76089
[27] A. Maeder. Physics, Formation and Evolution of Rotating Stars. Astronomy and Astrophysics Library. Springer Berlin Heidelberg, 2009.
[28] L. R. Mendez-Nunez and J. J. Carroll. Application of the MacCormack scheme to atmo-spheric nonhydrostatic models. Monthly weather review, 122(5):984-1000, 1994.
[29] F. Miczek. Simulation of low Mach number astrophysical flows. Dissertation, Technische Uni-versität München, 2013.
[30] F. Miczek, F. K. Röpke, and P. V. F. Edelmann. New numerical solver for flows at various mach numbers. Astronomy & Astrophysics Review, 576:A50, Apr. 2015.
[31] S. Noelle, Y. Xing, and C.-W. Shu. High-order well-balanced finite volume WENO schemes for shallow water equation with moving water. Journal of Computational Physics, 226(1):29-58, 2007. · Zbl 1120.76046
[32] F. Rieper, S. Hickel, and U. Achatz. A conservative integration of the pseudo-incompressible equations with implicit turbulence parameterization. Monthly Weather Review, 141(3):861-886, 2013.
[33] P. L. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 43(2):357-372, 1981. · Zbl 0474.65066
[34] C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics, 77(2):439-471, 1988. · Zbl 0653.65072
[35] A. Thomann, M. Zenk, and C. Klingenberg. A second order positivity preserving well-balanced finite volume scheme for Euler equations with gravity for arbitrary hydro-static equilibria. To appear in International Journal for Numerical Methods in Fluids, (2019), doi.org/10.1002/fld.4703.
[36] E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin Heidelberg, 2009. · Zbl 1227.76006
[37] R. Touma and C. Klingenberg. Well-balanced central finite volume methods for the Ripa system. Applied Numerical Mathematics, 97:42-68, 2015. · Zbl 1329.76217
[38] R. Touma, U. Koley, and C. Klingenberg. Well-balanced unstaggered central schemes for the Euler equations with gravitation. SIAM Journal on Scientific Computing, 38(5):B773-B807, 2016. · Zbl 1346.76100
[39] B. van Leer. Towards the ultimate conservative difference scheme. V -A second-order se-quel to Godunov’s method. Journal of Computational Physics, 32:101-136, July 1979. · Zbl 1364.65223
[40] Y. Xing and C.-W. Shu. High order well-balanced WENO scheme for the gas dynamics equations under gravitational fields. Journal of Scientific Computing, 54(2-3):645-662, 2013. · Zbl 1260.76022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.