×

Fractional Choquard-Kirchhoff problems with critical nonlinearity and Hardy potential. (English) Zbl 1479.35419

The authors study a fractional \(p\)-Kirchhoff-type problem with fractional \(p\)-Laplacian. The existence of a positive weak solution is proved by the use of the concentration-compactness principle and mountain pass theorem.

MSC:

35J62 Quasilinear elliptic equations
35R11 Fractional partial differential equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35J20 Variational methods for second-order elliptic equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Fröhlich, H., Theory of electrical breakdown in ionic crystal, Proc. Roy. Soc. Edinburgh Sect. A, 160, 230-241 (1937)
[2] Pekar, S., Untersuchung uber die Elektronentheorie der Kristalle (1954), Berlin: Akademie Verlag, Berlin · Zbl 0058.45503
[3] Elgart, A.; Schlein, B., Mean field dynamics of boson stars, Commun. Pure Appl. Math., 60, 500-545 (2007) · Zbl 1113.81032
[4] Giulini, D.; Großardt, A., The Schrödinger-Newton equation as a non-relativistic limit of self-gravitating Klein-Gordon and Dirac fields, Classical Quant. Grav., 29, 215010 (2012) · Zbl 1266.83009
[5] Jones, KRW, Gravitational self-energy as the litmus of reality, Mod. Phys. Lett. A, 10, 8, 657-668 (1995)
[6] Schunck, FE; Mielke, EW, General relativistic boson stars, Class. Quantum Grav., 20, R301-R356 (2003) · Zbl 1050.83002
[7] Penrose, R., Quantum computation, entanglement and state reduction, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 356, 1927-1939 (1998) · Zbl 1152.81659
[8] Penrose, R.: The road to reality. Alfred A. Knopf Inc., New York, A complete guide to the laws of the Universe (2005) · Zbl 1188.00007
[9] Lieb, E.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57, 93-105 (1976/1977) · Zbl 0369.35022
[10] Ma, L.; Zhao, L., Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195, 455-467 (2010) · Zbl 1185.35260
[11] Moroz, V.; Van Schaftingen, J., A guide to the Choquard equation, J. Fixed Point Theor. Appl., 19, 773-813 (2017) · Zbl 1360.35252
[12] Cassani, D.; Zhang, J., Choquard-type equations with Hardy-Littlewood-Sobolev upper-critical growth, Adv. Nonlinear Anal., 8, 1184-1212 (2019) · Zbl 1418.35168
[13] Mingqi, X.; Rădulescu, V.; Zhang, B., A critical fractional Choquard-Kirchhoff problem with magnetic field, Commun. Contemp. Math., 21, 1850004 (2019) · Zbl 1416.49012
[14] Seok, J., Limit profiles and uniqueness of ground states to the nonlinear Choquard equations, Adv. Nonlinear Anal., 8, 1083-1098 (2019) · Zbl 1419.35066
[15] Marano, S.; Mosconi, S., Asymptotic for optimizers of the fractional Hardy-Sobolev inequality, Commun. Contemp. Math., 21, 1850028 (2019) · Zbl 1430.35006
[16] Fiscella, A.; Valdinoci, E., A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal., 94, 156-170 (2014) · Zbl 1283.35156
[17] Autuori, G.; Fiscella, A.; Pucci, P., Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal., 125, 699-714 (2015) · Zbl 1323.35015
[18] Molica Bisci, G., Rădulescu, V., Servadei, R.: Variational methods for nonlocal fractional equations. Encyclop. Math. Appl. 162, Cambridge University Press, Cambridge, (2016) · Zbl 1356.49003
[19] Pucci, P.; Xiang, M.; Zhang, B., Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional \(p\)-Laplacian in \({{\mathbb{R}}}^N\), Calc. Var. Partial Differ. Equ., 54, 2785-2806 (2015) · Zbl 1329.35338
[20] Pucci, P.; Xiang, M.; Zhang, B., Existence and multiplicity of entire solutions for fractional \(p\)-Kirchhoff equations, Adv. Nonlinear Anal., 5, 27-55 (2016) · Zbl 1334.35395
[21] Wang, L.; Cheng, K.; Zhang, B., A uniqueness result for strong singular Kirchhoff-type fractional Laplacian problems, Appl. Math. Opt., 83, 1859-1875 (2021) · Zbl 1469.35002
[22] Xiang, M.; Zhang, B.; Ferrara, M., Existence of solutions for Kirchhoff type problem involving the non-local fractional \(p\)-Laplacian, J. Math. Anal. Appl., 424, 1021-1041 (2015) · Zbl 1317.35286
[23] Xiang, M.; Zhang, B.; Rădulescu, V., Multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional \(p\)-Laplacian, Nonlinearity, 29, 3186-3205 (2016) · Zbl 1349.35413
[24] Xiang, M.; Zhang, B.; Zhang, X., A nonhomogeneous fractional \(p\)-Kirchhoff type problem involving critical exponent in \({\mathbb{R}}^N\), Adv. Nonlinear Stud., 17, 611-640 (2017) · Zbl 1372.35348
[25] Fiscella, A.; Pucci, P., Kirchhoff-Hardy fractional problems with lack of compactness, Adv. Nonlinear Stud., 17, 429-456 (2017) · Zbl 1375.35180
[26] Fiscella, A.; Pucci, P., \(p\)-fractional Kirchhoff equations involving critical nonlinearities, Nonlinear Anal. Real World Appl., 35, 350-378 (2017) · Zbl 1372.35335
[27] Fiscella, A.; Pucci, P.; Zhang, B., \(p\)-fractional Hardy-Schrödinger-Kirchhoff systems with critical nonlinearities, Adv. Nonlinear Anal., 8, 1111-1131 (2019) · Zbl 1414.35258
[28] Song, Y.; Shi, S., Existence of infinitely many solutions for degenerate \(p\)-fractional Kirchhoff equations with critical Sobolev-Hardy nonlinearities, Z. Angew. Math. Phys., 68, 68 (2017) · Zbl 1383.35090
[29] Song, Y.; Shi, S., On a degenerate \(p\)-fractional Kirchhoff equations with critical Sobolev-Hardy nonlinearities, Mediterr. J. Math., 15, 17 (2018) · Zbl 1390.35090
[30] Shen, Z.; Gao, F.; Yang, M., Ground states for nonlinear fractional Choquard equations with general nonlinearities, Math. Methods Appl. Sci., 39, 4082-4098 (2016) · Zbl 1344.35168
[31] Wang, Y., Yang, Y.: Nonlocal problems with critical Choquard nonlinearities, Preprint
[32] Wu, D., Existence and stability of standing waves for nonlinear fractional Schrödinger equations with Hartree type nonlinearity, J. Math. Anal. Appl., 411, 530-542 (2014) · Zbl 1332.35343
[33] Pucci, P.; Xiang, M.; Zhang, B., Existence results for Schrödinger-Choquard-Kirchhoff equations involving the fractional \(p\)-Laplacian, Adv. Calc. Var., 12, 253-275 (2019) · Zbl 1431.35233
[34] Chen, W.; Mosconi, S.; Squassina, M., Nonlocal problems with critical Hardy nonlinearity, J. Funct. Anal., 275, 3065-3114 (2018) · Zbl 1402.35113
[35] Chen, W., Critical fractional \(p\)-Kirchhoff type problem with a generalized Choquard nonlinearity, J. Math. Phys., 59, 121502 (2018) · Zbl 1409.35077
[36] Xiang, M.; Zhang, B.; Rădulescu, V., Superlinear Schrödinger-Kirchhoff type problems involving the fractional \(p\)-Laplacian and critical exponent, Adv. Nonlinear Anal., 9, 690-709 (2020) · Zbl 1427.35340
[37] Ghoussoub, N.; Yuan, C., Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Am. Math. Soc., 352, 5703-5743 (2000) · Zbl 0956.35056
[38] Ambrosetti, A.; Rabinowitz, P., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 349-381 (1973) · Zbl 0273.49063
[39] Brasco, L.; Mosconi, S.; Squassina, M., Optimal decay of extremal functions for the fractional Sobolev inequality, Calc. Var. Partial Differ. Equ., 55, 1-32 (2016) · Zbl 1350.46024
[40] Lieb, E.; Loss, M., Analysis, Graduate Studies in Mathematics (2001), Providence, Rhode Island: Amer. Math. Soc, Providence, Rhode Island
[41] Mosconi, S.; Squassina, M., Nonlocal problems at nearly critical growth, Nonlinear Anal., 136, 84-101 (2016) · Zbl 1337.35053
[42] D’Avenia, P.; Squassina, M., On fractional Choquard equations, Math. Models Methods Appl. Sci., 25, 1447-1476 (2015) · Zbl 1323.35205
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.