×

Static perfect fluid space-time on compact manifolds. (English) Zbl 1478.83107

MSC:

83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
54E15 Uniform structures and generalizations
76E20 Stability and instability of geophysical and astrophysical flows
58J32 Boundary value problems on manifolds
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ambrozio L 2017 On static three-manifolds with positive scalar curvature J. Diff. Geom.107 1-45 · Zbl 1385.53020
[2] Baltazar H and Ribeiro E Jr 2018 Remarks on critical metrics of the scalar curvature and volume functionals on compact manifolds with boundary Pac. J. Math.297 29-45 · Zbl 1400.53028
[3] Barros A and Ribeiro E Jr 2014 Critical point equation on four-dimensional compact manifolds Math. Nachr.287 1618-23 · Zbl 1307.58006
[4] Barros A and Silva A 2019 Rigidity for critical metrics of the volume functional Math. Nachr.291 709-19 · Zbl 1419.53037
[5] Batista R, Diógenes R, Ranieri M and Ribeiro E Jr 2017 Critical metrics of the volume functional on compact three-manifolds with smooth boundary J. Geom. Anal.27 1530-47 · Zbl 1372.58010
[6] Boucher W, Gibbons G and Horowitz G 1984 Uniqueness theorem for anti-de Sitter space-time Phys. Rev. D 30 2447-51
[7] Cao H-D and Chen Q 2013 On bach-flat gradient shrinking Ricci solitons Duke Math. J.162 1149-69 · Zbl 1277.53036
[8] Corvino J, Eichmair M and Miao P 2013 Deformation of scalar curvature and volume Math. Ann.357 551-84 · Zbl 1278.53041
[9] Hwang S 2000 Critical points of the total scalar curvature functional on the space of metrics of constant scalar curvature Manuscr. Math.103 135-42 · Zbl 0972.58009
[10] Hijazi O, Montiel S and Raulot S 2014 Uniqueness of the de Sitter space-time among static vacua with positive cosmological constant Ann. Glob. Anal. Geom.47 167-78 · Zbl 1318.53054
[11] Qing J and Yuan W 2013 A note on static spaces and related problems J. Geom. Phys.74 18-27 · Zbl 1287.83016
[12] Qing J and Yuan W 2016 On scalar curvature rigidity of vacuum static spaces Math. Ann.365 1257-77 · Zbl 1353.53052
[13] Kobayashi O 1982 A differential equation arising from scalar curvature function J. Math. Soc. Japan34 665-75 · Zbl 0486.53034
[14] Kobayashi O and Obata M 1981 Conformally-flatness and static space-time Manifolds and Lie Groups(Progress in Mathematics vol 14) (Boston, MA: Brikhäuser) pp 197-206
[15] Kunzle H 1971 On the spherical symmetry of a static perfect fluid Commun. Math. Phys.20 85-100
[16] Leandro B, Pina H and Ribeiro E Jr 2019 Volume growth for geodesic balls of static vacuum space on 3-manifolds Ann. Mat. Pura App. (https://doi.org/10.1007/s10231-019-00904-2)
[17] Martin D and Visser M 2004 Algorithmic construction of static perfect fluid spheres Phys. Rev. D 69 104028 · Zbl 1405.83022
[18] Miao P and Tam L-F 2009 On the volume functional of compact manifolds with boundary with constant scalar curvatur Calculus Variations PDE36 141-71 · Zbl 1175.49043
[19] Miao P and Tam L-F 2011 Einstein and conformally flat critical metrics of the volume functional Trans. Am. Math. Soc.363 2907-37 · Zbl 1222.53041
[20] Obata M 1962 Certain conditions for a Riemannian manifold to be isometric with a sphere J. Math. Soc. Japan14 333-40 · Zbl 0115.39302
[21] Okumura M 1974 Hypersurfaces and a pinching problem on the second fundamental tensor Am. J. Math.96 207-13 · Zbl 0302.53028
[22] Oliynyk T 2016 Future stability of the FLRW fluid solutions in the presence of a positive cosmological constant Commun. Math. Phys.346 293-312 · Zbl 1346.83023
[23] Reilly R 1980 Geometric applications of the solvability of Neumann problems on a Riemannnian manifold Arch. Ration. Mech. Anal.75 23-9 · Zbl 0457.53008
[24] Shen Y 1997 A note on Fischer-Marsden’s conjecture Proc. Am. Math. Soc.125 901-5 · Zbl 0867.53035
[25] Wald R 2010 General Relativity (Chicago, IL: Chicago University Press)
[26] Yano K 1970 Integral Formulas in Riemannian Geometry (New York: Dekker) · Zbl 0213.23801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.