Towards statistically homogeneous and isotropic perfect fluid universes with cosmic backreaction. (English) Zbl 1478.83254


83F05 Relativistic cosmology
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
83C15 Exact solutions to problems in general relativity and gravitational theory
83E05 Geometrodynamics and the holographic principle
76E20 Stability and instability of geophysical and astrophysical flows
Full Text: DOI arXiv


[1] Buchert T 2000 On average properties of inhomogeneous fluids in general relativity I: dust cosmologies Gen. Relativ. Gravit.32 105-25 · Zbl 0976.83073
[2] Buchert T 2001 On average properties of inhomogeneous fluids in general relativity II: perfect fluid cosmologies Gen. Relativ. Gravit.33 1381-405 · Zbl 1020.83035
[3] Buchert T, Mourier P and Roy X 2018 Cosmological backreaction and its dependence on spacetime foliation Class. Quantum Grav.35 24LT02 · Zbl 1431.83187
[4] Heinesen A, Mourier P and Buchert T 2019 On the covariance of scalar averaging and backreaction in relativistic inhomogeneous cosmology Class. Quantum Grav.36 075001
[5] Rasanen S 2011 Backreaction: directions of progress Class. Quantum Grav.28 164008 · Zbl 1225.83104
[6] Buchert T and Rasanen S 2012 Backreaction in late-time cosmology Ann. Rev. Nucl. Part. Sci.62 57-79
[7] Clarkson C et al 2011 Does the growth of structure affect our dynamical models of the universe? The averaging, backreaction and fitting problems in cosmology Rep. Prog. Phys.74 112901
[8] Roy X et al 2011 Global gravitational instability of FLRW backgrounds—interpreting the dark sectors Class. Quantum Grav.28 165004 · Zbl 1225.83106
[9] Kolb E W, Matarrese S and Riotto A 2006 On cosmic acceleration without dark energy New J.Phys.8 322
[10] Rasanen S 2008 Evaluating backreaction with the peak model of structure formation J. Cosmol. Astropart. Phys.JCAP04(2008) 026
[11] Bolejko K 2017 Emergence of spatial curvature (arXiv:1707.01800v3 [astro-ph.CO])
[12] Roukema B F, Ostrowski J J and Buchert T 2013 Virialisation-induced curvature as a physical explanation for dark energy J. Cosmol. Astropart. Phys.JCAP10(2013) 043
[13] Buchert T, Kerscher M and Sicka C 2000 Backreaction of inhomogeneities on the expansion: the evolution of cosmological parameters Phys. Rev. D 62 043525
[14] Lemaitre G 1933 L’Universe en expansion Ann. Soc. Sci. de Brux. A 53 51
[15] Lemaitre G 1997 The expanding universe Gen. Relativ. Gravit.29 637 (Engl. transl.) · Zbl 0876.53072
[16] Tolman R C 1934 Effect of inhomogeneity on cosmological models Proc. Natl Acad. Sci. USA20 169-76 · JFM 60.0809.02
[17] Bondi H 1947 Spherically symmetrical models in general relativity Mon. Not. R. Astron. Soc.107 410 · Zbl 0031.23804
[18] Lavinto M, Rasanen S and Szybka S J 2013 Average expansion rate and light propagation in a cosmological Tardis spacetime J. Cosmol. Astropart. Phys.JCAP12(2013) 051
[19] Montanari F 2017 Syksy Rasanen: evaluating backreaction with the ellipsoidal collapse model J. Cosmol. Astropart. Phys.JCAP12(2017) 008
[20] Bolejko K 2017 Relativistic numerical cosmology with Silent Universes Class. Quantum Grav.35 024003 · Zbl 1383.83226
[21] Szekeres P 1975 A class of inhomogeneous cosmological models Commun. Math. Phys.41 55-64 · Zbl 0296.53051
[22] Bolejko K 2017 Cosmological backreaction within the Szekeres model and emergence of spatial curvature J. Cosmol. Astropart. Phys.JCAP06(2017) 025
[23] Buchert T 2006 On globally static and stationary cosmologies with or without a cosmological constant and the dark energy problem Class. Quantum Grav.23 817-44 · Zbl 1089.83025
[24] Vigneron Q and Buchert T 2019 Dark matter from backreaction? Collapse models on galaxy cluster scales Class. Quantum Grav.36 175006
[25] Bolejko K 2018 Emerging spatial curvature can resolve the tension between high-redshift CMB and low-redshift distance ladder measurements of the Hubble constant Phys. Rev. D 97 103529
[26] Rasanen S 2009 Light propagation in statistically homogeneous and isotropic dust universes J. Cosmol. Astropart. Phys.JCAP02(2009) 011
[27] Rasanen S 2010 Light propagation in statistically homogeneous and isotropic universes with general matter content J. Cosmol. Astropart. Phys.JCAP03(2010) 018
[28] Koksbang S M 2017 Light propagation in Swiss cheese models of random close-packed Szekeres structures: effects of anisotropy and comparisons with perturbative results Phys. Rev. D 95 063532
[29] Larena J et al 2009 Testing backreaction effects with observations Phys. Rev. D 79 083011
[30] Rosenthal E and Flanagan E E 2009 Cosmological backreaction and spatially averaged spatial curvature (arXiv:0809.2107v1 [gr-qc])
[31] Darmois G 1927 Memorial des sciences mathematiques Fascicule25 28
[32] For a source in English see e.g.Bonnor W B and Vickers P A 1981 Junction conditions in general relativity Gen. Relativ. Gravit.13
[33] Einstein A and Straus E G 1945 The influence of the expansion of space on the gravitation fields surrounding the individual stars Rev. Mod. Phys.17 120 · Zbl 0060.44301
[34] Einstein A and Straus E G 1946 Corrections and additional remarks to our paper: the influence of the expansion of space on the gravitation fields surrounding the individual stars Rev. Mod. Phys.18 148 · Zbl 0060.44302
[35] Kottler F 1918 Uber die physikalischen Grundlagen der Einsteinschen gravitationstheorie Ann. Phys., Lpz.361 401462 · JFM 46.1306.01
[36] Fleury P, Dupuy H and Uzan J-P 2013 Interpretation of the Hubble diagram in a nonhomogeneous universe Phys. Rev. D 87 123526
[37] Fleury P 2014 Swiss-cheese models and the Dyer-Roeder approximation J. Cosmol. Astropart. Phys.JCAP06(2014) 054
[38] Bolejko K 2009 The Szekeres Swiss-cheese model and the CMB observations Gen. Relativ. Gravit.41 1737-55 · Zbl 1177.83131
[39] Bolejko K and Celerier M-N 2010 Szekeres Swiss-cheese model and supernova observations Phys. Rev. D 82 103510
[40] Peel A, Troxel M A and Ishak M 2014 Effect of inhomogeneities on high precision measurements of cosmological distances Phys. Rev. D 90 123536
[41] Koksbang S M and Hannestad S 2015 Studying the precision of ray tracing techniques with Szekeres models Phys. Rev. D 92 023532
[42] Sugiura N, Nakao K-I, Ida D, Sakai N and Ishihara H 2000 How do nonlinear voids affect light propagation? Prog. Theor. Phys.103 73-89
[43] Brouzakis N, Tetradis N and Tzavara E 2007 The effect of large-scale inhomogeneities on the luminosity distance J. Cosmol. Astropart. Phys.JCAP02(2007) 013
[44] Brouzakis N, Tetradis N and Tzavara E 2008 Light propagation and large-scale inhomogeneities J. Cosmol. Astropart. Phys.JCAP04(2008) 008
[45] Kai T, Kozaki H, Nakao K-I, Nambu Y and Yoo C-M 2007 Can inhomogeneties accelerate the cosmic volume expansion? Prog. Theor. Phys.117 229-40 · Zbl 1137.83378
[46] Marra V, Kolb E W, Matarrese S and Riotto A 2007 On cosmological observables in a Swiss-cheese universe Phys. Rev. D 76 123004
[47] Marra V, Kolb E W and Matarrese S 2008 Light-cone averages in a swiss-cheese universe Phys. Rev. D 77 023003
[48] Marra V and Notari A 2011 Observational constraints on inhomogeneous cosmological models without dark energy Class. Quantum Grav.28 164004 · Zbl 1225.83101
[49] Biswas T and Notari A 2008 Swiss-cheese’ inhomogeneous cosmology & the dark energy problem J. Cosmol. Astropart. Phys.JCAP06(2008) 021
[50] Clifton T and Zuntz J 2009 Hubble diagram dispersion from large-scale structure Mon. Not. R. Astron. Soc.400 2185
[51] Valkenburg W 2009 Swiss cheese and a cheesy CMB J. Cosmol. Astropart. Phys.JCAP06(2009) 010
[52] Kostov V 2010 Average luminosity distance in inhomogeneous universes J. Cosmol. Astropart. Phys.JCAP04(2010) 001
[53] Szybka S J 2011 On light propagation in Swiss-cheese cosmologies Phys. Rev. D 84 044011
[54] Bolejko K 2011 The effect of inhomogeneities on the distance to the last scattering surface and the accuracy of the CMB analysis J. Cosmol. Astropart. Phys.JCAP02(2011) 025
[55] Ali Vanderveld R, Flanagan E E and Wasserman I 2008 Luminosity distance in ‘Swiss cheese’ cosmology with randomized voids: I. Single void size Phys. Rev. D 78 083511
[56] Flanagan E E, Kumar N, Wasserman I and Ali Vanderveld R 2012 Luminosity distance in Swiss cheese cosmology with randomized voids. II. Magnification probability distributions Phys. Rev. D 85 023510
[57] Sahni V, Feldman H and Stebbins A 1992 Loitering universe Astrophys. J.385 1S
[58] Marra V and Paakkonen M 2012 Exact spherically-symmetric inhomogeneous model with n perfect fluids J. Cosmol. Astropart. Phys.JCAP01(2012) 025
[59] Gaspar I D, Hidalgo J C and Sussman R A 2019 Non-comoving baryons and cold dark matter in cosmic voids Eur. Phys. J. C 79 106
[60] Zibin J P 2008 Scalar perturbations on Lemaitre-Tolman-Bondi spacetimes Phys. Rev. D 78 043504
[61] Scott G D and Kilgour D M 1969 The density of random close packing of spheres Brit. J. Appl. Phys.2 863
[62] Seitz S, Schneider P and Ehlers J 1994 Light propagation in arbitrary spacetimes and the gravitational lens approximation Class. Quantum Grav.11 2345-74 · Zbl 0810.53079
[63] Ehlers J 1961 Beitrage zur relativistischen Mechanik kontinuerlicher medien Proc. of the Mathematical-Natural Science Section of the Mainz Academy of Science and Literaturevol 11 pp 792-837
[64] Ellis G F R and Dunsby P K S 1993 Contributions to the relativistic mechanics of continuous media Gen. Relativ. Gravit.25 1225-66 (Engl. transl.) · Zbl 0792.53070
[65] Ellis G F R, Maartens R and MacCallum M A H 2012 Relativistic Cosmology (Cambridge: Cambridge University Press) · Zbl 1242.83001
[66] Paranjape A and Singh T P 2008 Explicit cosmological coarse graining via spatial averaging Gen. Relativ. Gravit.40 139-57 · Zbl 1136.83338
[67] Buchert T and Carfora M 2002 Regional averaging and scaling in relativistic cosmology Class. Quantum Grav.19 6109-45 · Zbl 1021.83028
[68] Rasanen S 2008 Comment on ‘Nontrivial geometries: bounds on the curvature of the universe’ Astropart. Phys.30 216-7
[69] Stichel P C 2018 Analytical solutions for two inhomogeneous cosmological models with energy flow and dynamical curvature Phys. Rev. D 98 104022
[70] Clarkson C, Bassett B and Lu T H 2008 A general test of the copernican principle Phys. Rev. Lett.101 011301
[71] Rasanen S, Bolejko K and Finoguenov A 2015 New test of the FLRW metric using the distance sum rule Phys. Rev. Lett.115 101301
[72] Rasanen S 2014 A covariant treatment of cosmic parallax J. Cosmol. Astropart. Phys.JCAP03(2014) 035
[73] Koksbang S M and Hannestad S 2015 Methods for studying the accuracy of light propagation in N-body simulations Phys. Rev. D 91 043508
[74] Mustapha N, Bassett B A, Hellaby C and Ellis G F R 1998 Shrinking II—the distortion of the area distance-redshift relation in inhomogeneous isotropic universes Class. Quantum Grav.15 2363-79 · Zbl 0964.83035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.