×

More about stable wormholes in beyond Horndeski theory. (English) Zbl 1477.83078

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory
76E20 Stability and instability of geophysical and astrophysical flows
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Ellis H G 1973 Ether flow through a drainhole—a particle model in general relativity J. Math. Phys.14 104
[2] Bronnikov K A 1973 Scalar-tensor theory and scalar charge Acta Phys. Polon. B 4 251
[3] Morris M S and Thorne K S 1988 Wormholes in space-time and their use for interstellar travel: a tool for teaching general relativity Am. J. Phys.56 395 · Zbl 0957.83529
[4] Morris M S, Thorne K S and Yurtsever U 1988 Wormholes, time machines, and the weak energy condition Phys. Rev. Lett.61 1446
[5] Visser M 1995 Lorentzian Wormholes: from Einstein to Hawking (Woodbury: AIP)
[6] Kodama T 1978 General relativistic nonlinear field: a kink solution in a generalized geometry Phys. Rev. D 18 3529
[7] Armendariz-Picon C 2002 On a class of stable, traversable Lorentzian wormholes in classical general relativity Phys. Rev. D 65 104010
[8] Cline J M, Jeon S and Moore G D 2004 The phantom menaced: constraints on low-energy effective ghosts Phys. Rev. D 70 043543
[9] Rubakov V A 2014 The null energy condition and its violation Phys. Usp.57 128
[10] Rubakov V A 2014 The null energy condition and its violation Usp. Fiz. Nauk184 137
[11] Tipler F J 1978 Energy conditions and spacetime singularities Phys. Rev. D 17 2521
[12] Ijjas A, Pretorius F and Steinhardt P J 2019 Stability and the gauge problem in non-perturbative cosmology J. Cosmol. Astropart. Phys.JCAP01(2019) 015
[13] Kanti P, Kleihaus B and Kunz J 2011 Wormholes in dilatonic Einstein-Gauss-Bonnet theory Phys. Rev. Lett.107 271101
[14] Kanti P, Kleihaus B and Kunz J 2012 Stable Lorentzian wormholes in dilatonic Einstein-Gauss-Bonnet theory Phys. Rev. D 85 044007
[15] Cuyubamba M A, Konoplya R A and Zhidenko A 2018 No stable wormholes in Einstein-Dilaton-Gauss-Bonnet theory Phys. Rev. D 98 044040
[16] Pilo L, Rattazzi R and Zaffaroni A 2000 The fate of the radion in models with metastable graviton J. High Energy Phys.JHEP07(2000) 056 · Zbl 0959.83055
[17] Horndeski G W 1974 Second-order scalar-tensor field equations in a four-dimensional space Int. J. Theor. Phys.10 363
[18] Gleyzes J, Langlois D, Piazza F and Vernizzi F 2015 Healthy theories beyond Horndeski Phys. Rev. Lett.114 211101
[19] Gleyzes J, Langlois D, Piazza F and Vernizzi F 2015 Exploring gravitational theories beyond Horndeski J. Cosmol. Astropart. Phys.JCAP02(2015) 018
[20] Kobayashi T 2019 Horndeski theory and beyond: a review (arXiv:1901.07183 [gr-qc])
[21] Bronnikov K A, Skvortsova M V and Starobinsky A A 2010 Grav. Cosmol.16 216 · Zbl 1232.83066
[22] Korolev R V and Sushkov S V 2014 Exact wormhole solutions with nonminimal kinetic coupling Phys. Rev. D 90 124025
[23] Rubakov V A 2016 Can Galileons support Lorentzian wormholes? Teor. Mat. Fiz.187 338 · Zbl 1346.83049
[24] Rubakov V A 2016 Can Galileons support Lorentzian wormholes? Theor. Math. Phys.187 743 · Zbl 1346.83049
[25] Rubakov V A 2016 More about wormholes in generalized Galileon theories Theor. Math. Phys.188 1253 · Zbl 1353.83022
[26] Rubakov V A 2016 More about wormholes in generalized Galileon theories Teor. Mat. Fiz.188 337 · Zbl 1353.83022
[27] Kolevatov R and Mironov S 2016 Cosmological bounces and Lorentzian wormholes in Galileon theories with an extra scalar field Phys. Rev. D 94 123516
[28] Evseev O A and Melichev O I 2018 No static spherically symmetric wormholes in Horndeski theory Phys. Rev. D 97 124040
[29] Libanov M, Mironov S and Rubakov V 2016 Generalized Galileons: instabilities of bouncing and Genesis cosmologies and modified Genesis J. Cosmol. Astropart. Phys.JCAP08(2016) 037
[30] Kobayashi T 2016 Generic instabilities of nonsingular cosmologies in Horndeski theory: a no-go theorem Phys. Rev. D 94 043511
[31] Cai Y, Wan Y, Li H G, Qiu T and Piao Y S 2017 The effective field theory of nonsingular cosmology J. High Energy Phys.JHEP01(2017) 090 · Zbl 1373.83124
[32] Creminelli P, Pirtskhalava D, Santoni L and Trincherini E 2016 Stability of geodesically complete cosmologies J. Cosmol. Astropart. Phys.JCAP11(2016) 047
[33] Kolevatov R, Mironov S, Sukhov N and Volkova V 2017 Cosmological bounce and Genesis beyond Horndeski J. Cosmol. Astropart. Phys.JCAP08(2017) 038
[34] Cai Y and Piao Y S 2017 A covariant Lagrangian for stable nonsingular bounce J. High Energy Phys.JHEP09(2017) 027 · Zbl 1382.83005
[35] Mironov S, Rubakov V and Volkova V 2018 Bounce beyond Horndeski with GR asymptotics and γ-crossing J. Cosmol. Astropart. Phys.JCAP10(2018) 050
[36] Mironov S, Rubakov V and Volkova V 2018 Towards wormhole beyond Horndeski Proc. 20th Int. Seminar ‘Quarks-2018’ (May 27-June 2 2018, Valday, Russia) EPJ Web Conf.191 07014
[37] Franciolini G, Hui L, Penco R, Santoni L and Trincherini E 2019 Stable wormholes in scalar-tensor theories J. High Energy Phys.JHEP01(2019) 221 · Zbl 1409.83146
[38] Kobayashi T, Motohashi H and Suyama T 2012 Black hole perturbation in the most general scalar-tensor theory with second-order field equations I: the odd-parity sector Phys. Rev. D 85 084025
[39] Kobayashi T, Motohashi H and Suyama T 2017 Black hole perturbation in the most general scalar-tensor theory with second-order field equations I: the odd-parity sector Phys. Rev. D 96 109903 (erratum)
[40] Kobayashi T, Motohashi H and Suyama T 2014 Black hole perturbation in the most general scalar-tensor theory with second-order field equations II: the even-parity sector Phys. Rev. D 89 084042
[41] Gonzalez J A, Guzman F S and Sarbach O 2009 Instability of wormholes supported by a ghost scalar field. I. Linear stability analysis Class. Quantum Grav.26 015010 · Zbl 1157.83008
[42] Regge T and Wheeler J A 1957 Stability of a Schwarzschild singularity Phys. Rev.108 1063 · Zbl 0079.41902
[43] Gerlach U H and Sengupta U K 1979 Gauge invariant perturbations on most general spherically symmetric space-times Phys. Rev. D 19 2268
[44] De Felice A, Suyama T and Tanaka T 2011 Stability of Schwarzschild-like solutions in f(R,G) gravity models Phys. Rev. D 83 104035
[45] Ijjas A and Steinhardt P J 2017 Fully stable cosmological solutions with a non-singular classical bounce Phys. Lett. B 764 289 · Zbl 1369.85008
[46] Ageeva Y, Evseev O, Melichev O and Rubakov V 2018 Horndeski Genesis: strong coupling and absence thereof EPJ Web Conf.191 07010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.