×

Superconvergent HDG methods for Maxwell’s equations via the \(M\)-decomposition. (English) Zbl 1477.65202

Summary: The concept of the \(M\)-decomposition was introduced by Cockburn et al. to provide criteria to guarantee optimal convergence rates for the Hybridizable Discontinuous Galerkin (HDG) method for coercive elliptic problems. In that paper they systematically constructed superconvergent hybridizable discontinuous Galerkin (HDG) methods to approximate the solutions of elliptic PDEs on unstructured meshes. In this paper, we use the \(M\)-decomposition to construct HDG methods for the Maxwell’s equations on unstructured meshes in two dimension. In particular, we show the any choice of spaces having an \(M\)-decomposition, together with sufficiently rich auxiliary spaces, has an optimal error estimate and superconvergence even though the problem is not in general coercive. Motivated by the elliptic case, we obtain a superconvergent rate for the curl and flux of the solution, and this is confirmed by our numerical experiments.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
78A25 Electromagnetic theory (general)
78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
35Q61 Maxwell equations

Software:

iHDG
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Nédélec, J.-C., A new family of mixed finite elements in \(R^3\), Numer. Math., 50, 1, 57-81 (1986) · Zbl 0625.65107
[2] Nédélec, J.-C., Mixed finite elements in \(R^3\), Numer. Math., 35, 3, 315-341 (1980) · Zbl 0419.65069
[3] Hiptmair, R., Finite elements in computational electromagnetism, Acta Numer., 11, 237-339 (2002) · Zbl 1123.78320
[4] Monk, P., Finite element methods for Maxwell’s equations, (Numerical Mathematics and Scientific Computation (2003), Oxford University Press: Oxford University Press New York) · Zbl 1024.78009
[5] Monk, P., A finite element method for approximating the time-harmonic Maxwell equations, Numer. Math., 63, 2, 243-261 (1992) · Zbl 0757.65126
[6] Zhong, L.; Shu, S.; Wittum, G.; Xu, J., Optimal error estimates for Nedelec edge elements for time-harmonic Maxwell’s equations, J. Comput. Math., 27, 5, 563-572 (2009) · Zbl 1212.65467
[7] Perugia, I.; Schötzau, D.; Monk, P., Stabilized interior penalty methods for the time-harmonic Maxwell equations, Comput. Methods Appl. Mech. Engrg., 191, 41-42, 4675-4697 (2002) · Zbl 1040.78011
[8] Perugia, I.; Schötzau, D., The \(h p\)-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations, Math. Comp., 72, 243, 1179-1214 (2003) · Zbl 1084.78007
[9] Houston, P.; Perugia, I.; Schötzau, D., Mixed discontinuous Galerkin approximation of the Maxwell operator, SIAM J. Numer. Anal., 42, 1, 434-459 (2004) · Zbl 1084.65115
[10] Griesmaier, R.; Monk, P., Error analysis for a hybridizable discontinuous Galerkin method for the Helmholtz equation, J. Sci. Comput., 49, 3, 291-310 (2011) · Zbl 1246.65211
[11] Cui, J.; Zhang, W., An analysis of HDG methods for the Helmholtz equation, IMA J. Numer. Anal., 34, 1, 279-295 (2014) · Zbl 1282.65151
[12] Nguyen, N. C.; Peraire, J.; Cockburn, B., Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell’s equations, J. Comput. Phys., 230, 19, 7151-7175 (2011) · Zbl 1230.78031
[13] Brenner, S. C.; Cui, J.; Nan, Z.; Sung, L.-y., Hodge decomposition for divergence-free vector fields and two-dimensional Maxwell’s equations, Math. Comp., 81, 643-659 (2012) · Zbl 1274.78089
[14] Brenner, S.; Gedicke, J.; Sung, L.-Y., Hodge decomposition for two-dimensional time-harmonic Maxwell’s equations: impedance boundary condition, Math. Methods Appl. Sci., 40, 2, 370-390 (2015) · Zbl 1361.78007
[15] Cockburn, B.; Gopalakrishnan, J.; Lazarov, R., Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47, 2, 1319-1365 (2009) · Zbl 1205.65312
[16] Cockburn, B.; Gopalakrishnan, J.; Sayas, F.-J., A projection-based error analysis of HDG methods, Math. Comp., 79, 271, 1351-1367 (2010) · Zbl 1197.65173
[17] Chen, G.; Hu, W.; Shen, J.; Singler, J. R.; Zhang, Y.; Zheng, X., An HDG method for distributed control of convection diffusion PDEs, J. Comput. Appl. Math., 343, 643-661 (2018) · Zbl 1448.65222
[18] Hu, W.; Shen, J.; Singler, J. R.; Zhang, Y.; Zheng, X., A superconvergent HDG method for distributed control of convection diffusion PDEs, J. Sci. Comput., 76, 3, 1436-1457 (2018) · Zbl 1401.65133
[19] Gong, W.; Hu, W.; Mateos, M.; Singler, J.; Zhang, X.; Zhang, Y., A new HDG method for Dirichlet boundary control of convection diffusion PDEs II: Low regularity, SIAM J. Numer. Anal., 56, 4, 2262-2287 (2018) · Zbl 1396.49025
[20] Cesmelioglu, A.; Cockburn, B.; Qiu, W., Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier-Stokes equations, Math. Comp., 86, 306, 1643-1670 (2017) · Zbl 1422.65377
[21] Muralikrishnan, S.; Tran, M.-B.; Bui-Thanh, T., IHDG: an iterative HDG framework for partial differential equations, SIAM J. Sci. Comput., 39, 5, S782-S808 (2017) · Zbl 1422.65405
[22] Bui-Thanh, T., Construction and analysis of HDG methods for linearized shallow water equations, SIAM J. Sci. Comput., 38, 6, A3696-A3719 (2016) · Zbl 1457.65098
[23] Sheldon, J. P.; Miller, S. T.; Pitt, J. S., A hybridizable discontinuous Galerkin method for modeling fluid-structure interaction, J. Comput. Phys., 326, 91-114 (2016) · Zbl 1373.74042
[24] Cockburn, B.; Fu, G.; Sayas, F. J., Superconvergence by \(M\)-decompositions. Part I: General theory for HDG methods for diffusion, Math. Comp., 86, 306, 1609-1641 (2017) · Zbl 1361.65084
[25] Cockburn, B.; Fu, G.; Qiu, W., Discrete \(H^1\)-inequalities for spaces admitting M-decompositions, SIAM J. Numer. Anal., 56, 6, 3407-3429 (2018) · Zbl 1407.65285
[26] Cockburn, B.; Fu, G., Devising superconvergent HDG methods with symmetric approximate stresses for linear elasticity by \(M\)-decompositions, IMA J. Numer. Anal., 38, 2, 566-604 (2018) · Zbl 1477.65205
[27] Cockburn, B.; Fu, G.; Qiu, W., A note on the devising of superconvergent HDG methods for Stokes flow by \(M\)-decompositions, IMA J. Numer. Anal., 37, 2, 730-749 (2017) · Zbl 1433.76077
[28] Cockburn, B.; Fu, G., Superconvergence by \(M\)-decompositions. Part III: Construction of three-dimensional finite elements, ESAIM Math. Model. Numer. Anal., 51, 1, 365-398 (2017) · Zbl 1412.65137
[29] Cockburn, B.; Fu, G., Superconvergence by \(M\)-decompositions. Part II: Construction of two-dimensional finite elements, ESAIM Math. Model. Numer. Anal., 51, 1, 165-186 (2017) · Zbl 1412.65205
[30] Chen, H.; Qiu, W.; Shi, K.; Solano, M., A superconvergent HDG method for the Maxwell equations, J. Sci. Comput., 70, 3, 1010-1029 (2017) · Zbl 1372.78022
[31] Chen, H.; Qiu, W.; Shi, K., A priori and computable a posteriori error estimates for an HDG method for the coercive maxwell equations, Comput. Methods Appl. Mech. Engrg., 333, 287-310 (2018) · Zbl 1440.78005
[32] Feng, X.; Lu, P.; Xu, X., A hybridizable discontinuous Galerkin method for the time-harmonic Maxwell equations with high wave number, Comput. Methods Appl. Math., 16, 3, 429-445 (2016) · Zbl 1342.65216
[33] Lu, P.; Chen, H.; Qiu, W., An absolutely stable \(h p\)-HDG method for the time-harmonic maxwell equations with high wave number, Math. Comp., 86, 306, 1553-1577 (2017) · Zbl 1362.78012
[34] Girault, V.; Raviart, P.-A., Finite element methods for Navier-Stokes equations, (5 of Springer Series in Computational Mathematics. 5 of Springer Series in Computational Mathematics, theory and algorithms. (1986), Springer-Verlag: Springer-Verlag Berlin)
[35] Amrouche, C.; Bernardi, C.; Dauge, M.; Girault, V., Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci., 21, 9, 823-864 (1998) · Zbl 0914.35094
[36] Dauge, M., Elliptic boundary value problems on corner domains, (1341 of Lecture Notes in Mathematics. 1341 of Lecture Notes in Mathematics, smoothness and asymptotics of solutions (1988), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0668.35001
[37] Cockburn, B.; Dong, B.; Guzmán, J., A hybridizable and superconvergent discontinuous Galerkin method for biharmonic problems, J. Sci. Comput., 40, 1-3, 141-187 (2009) · Zbl 1203.65249
[38] Cockburn, B.; Gopalakrishnan, J.; Nguyen, N. C.; Peraire, J.; Sayas, F.-J., Analysis of HDG methods for Stokes flow, Math. Comp., 80, 274, 723-760 (2011) · Zbl 1410.76164
[39] Chabaud, B.; Cockburn, B., Uniform-in-time superconvergence of HDG methods for the heat equation, Math. Comp., 81, 277, 107-129 (2012) · Zbl 1251.65138
[40] Celiker, F.; Cockburn, B.; Shi, K., A projection-based error analysis of HDG methods for Timoshenko beams, Math. Comp., 81, 277, 131-151 (2012) · Zbl 1427.74163
[41] Cockburn, B.; Qiu, W.; Shi, K., Conditions for superconvergence of HDG methods for second-order elliptic problems, Math. Comp., 81, 279, 1327-1353 (2012) · Zbl 1251.65158
[42] Chen, Y.; Cockburn, B., Analysis of variable-degree HDG methods for convection-diffusion equations. Part I: general nonconforming meshes, IMA J. Numer. Anal., 32, 4, 1267-1293 (2012) · Zbl 1277.65094
[43] Cesmelioglu, A.; Cockburn, B.; Nguyen, N. C.; Peraire, J., Analysis of HDG methods for Oseen equations, J. Sci. Comput., 55, 2, 392-431 (2013) · Zbl 1366.76048
[44] Ern, A.; Guermond, J.-L., Finite element quasi-interpolation and best approximation, ESAIM Math. Model. Numer. Anal., 51, 4, 1367-1385 (2017) · Zbl 1378.65041
[45] Boffi, D.; Brezzi, F.; Demkowicz, L. F.; Durán, R. G.; Falk, R. S.; Fortin, M.; elements, Mixed.finite.; conditions, compatibility.; applications, Mixed finite elements, compatibility conditions, and applications, 1939 of lecture notes in mathematics, (Boffi; Gastaldi, Lucia, Fondazione C.I.M.E., Florence, 2008, Lectures Given At the C.I.M.E. Summer School Held in Cetraro, June 26-July 1 (2006), Springer-Verlag: Springer-Verlag Berlin)
[46] Houston, P.; Perugia, I.; Schneebeli, A.; Schötzau, D., Interior penalty method for the indefinite time-harmonic Maxwell equations, Numer. Math., 100, 3, 485-518 (2005) · Zbl 1071.65155
[47] Cockburn, B.; Fu, G., A systematic construction of finite element commuting exact sequences, SIAM J. Numer. Anal., 55, 4, 1650-1688 (2017) · Zbl 1369.65145
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.