Nonexistence of solutions for indefinite fractional parabolic equations. (English) Zbl 1476.35073

Summary: We study fractional parabolic equations with indefinite nonlinearities \[ \frac{ \partial u}{ \partial t}(x, t) + ( - \Delta )^s u(x, t) = x_1 u^p(x, t),\quad (x, t) \in \mathbb{R}^n \times \mathbb{R},\] where \(0 < s < 1\) and \(1 < p < \infty \). We first prove that all positive bounded solutions are monotone increasing along the \(x_1\) direction. Based on this we derive a contradiction and hence obtain non-existence of solutions. These monotonicity and nonexistence results are crucial tools in a priori estimates and complete blow-up for fractional parabolic equations in bounded domains. To this end, we introduce several new ideas and developed a systematic approach which may also be applied to investigate qualitative properties of solutions for many other fractional parabolic problems.


35B53 Liouville theorems and Phragmén-Lindelöf theorems in context of PDEs
35R11 Fractional partial differential equations
30C80 Maximum principle, Schwarz’s lemma, Lindelöf principle, analogues and generalizations; subordination
35K15 Initial value problems for second-order parabolic equations
35K58 Semilinear parabolic equations
Full Text: DOI arXiv


[1] Applebaum, D., Lévy processes-from probability to finance and quantum groups, Not. Am. Math. Soc., 51, 1336-1347 (2004) · Zbl 1053.60046
[2] Barrios, B.; Del Pezzo, L.; García, J.; Quaas, A., A priori bounds and existence of solutions for some nonlocal elliptic problems, Rev. Mat. Iberoam., 34, 195-220 (2018) · Zbl 1391.35082
[3] Barrios, B.; Del Pezzo, L.; García, J.; Quaas, A., A Liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions, Discrete Contin. Dyn. Syst., 37, 5731-5746 (2017) · Zbl 1368.45007
[4] Berestycki, H.; Capuzzo-Dolcetta, I.; Nirenberg, L., Supperlinear indefinite elliptic problems and nonlinear Liouville theorems, Topol. Methods Nonlinear Anal., 4, 59-78 (1994) · Zbl 0816.35030
[5] Bidaut-Véron, M., Initial blow-up for the solutions of a semilinear parabolic equation with source term, (Équations aux dérivées partielles et applications (1998), Gauthier-Villars, Éd. Sci. Méd. Elsevier: Gauthier-Villars, Éd. Sci. Méd. Elsevier Paris), 189-198 · Zbl 0914.35055
[6] Bouchaud, J.; Georges, A., Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications, Phys. Rep., 195, 127-293 (1990)
[7] Caffarelli, L.; Silvestre, L., An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32, 1245-1260 (2007) · Zbl 1143.26002
[8] Caffarelli, L.; Vasseur, A., Drift diffusion equations with fractional diffusion and the quasigeostrophic equation, Ann. Math., 171, 1903-1930 (2010) · Zbl 1204.35063
[9] Coffman, C., Uniqueness of the ground state solution for \(\operatorname{\Delta} u - u + u^3 = 0\) and a variational characterization of other solutions, Arch. Ration. Mech. Anal., 46, 81-95 (1972) · Zbl 0249.35029
[10] Chen, W.; Li, C., Indefinite elliptic problems in a domain, Discrete Contin. Dyn. Syst., 3, 333-340 (1997) · Zbl 0948.35054
[11] Chen, W.; Li, C.; Li, Y., A direct blowing-up and rescaling argument on nonlocal elliptic equations, Int. J. Math., 27, Article 1650064 pp. (2016) · Zbl 1348.35080
[12] Chen, W.; Li, C.; Li, Y., A direct method of moving planes for the fractional Laplacian, Adv. Math., 308, 404-437 (2017) · Zbl 1362.35320
[13] Chen, W.; Fang, Y.; Yang, R., Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274, 167-198 (2015) · Zbl 1372.35332
[14] Chen, W.; Li, Y.; Zhang, R., A direct method of moving spheres on fractional order equations, J. Funct. Anal., 272, 4131-4157 (2017) · Zbl 1431.35225
[15] Chen, W.; Li, C.; Zhu, J., Fractional equations with indefinite nonlinearities, Discrete Contin. Dyn. Syst., 39, 1257-1268 (2019) · Zbl 1408.35037
[16] Chen, W.; Wang, P.; Niu, Y.; Hu, Y., Asymptotic method of moving planes for fractional parabolic equations, Adv. Math., 377, Article 107463 pp. (2021) · Zbl 1455.35281
[17] Chen, W.; Wu, L., Uniform a priori estimates for solutions of higher critical order fractional equations, Calc. Var. Partial Differ. Equ., 60, 102 (2021) · Zbl 07355280
[18] W. Chen, L. Wu, Liouville theorems for fractional parabolic equations, preprint, 2021.
[19] Chen, W.; Zhu, J., Indefinite fractional elliptic problem and Liouville theorems, J. Differ. Equ., 260, 4758-4785 (2016) · Zbl 1336.35089
[20] Dai, W.; Qin, G.; Wu, D., Direct methods for pseudo-relativistic Schrödinger operators, J. Geom. Anal., 31, 5555-5618 (2021) · Zbl 1475.35314
[21] Dai, W.; Liu, Z.; Lu, G., Hardy-Sobolev type integral systems with Dirichlet boundary conditions in a half space, Commun. Pure Appl. Anal., 16, 1253-1264 (2017) · Zbl 1369.45005
[22] Dai, W.; Qin, G., Classification of nonnegative classical solutions to third-order equations, Adv. Math., 328, 822-857 (2018) · Zbl 1429.35198
[23] Du, Y.; Li, S., Nonlinear Liouville theorems and a priori estimates for indefinite superlinear elliptic equations, Adv. Differ. Equ., 10, 841-860 (2005) · Zbl 1161.35388
[24] Fernández-Real, X.; Ros-Oton, X., Regularity theory for general stable operators: parabolic equations, J. Funct. Anal., 272, 4165-4221 (2017) · Zbl 1372.35058
[25] Figueiredo, D.; Lions, P.; Nussbaum, R., A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures Appl., 61, 41-63 (1982) · Zbl 0452.35030
[26] Gilboa, G.; Osher, S., Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7, 1005-1028 (2008) · Zbl 1181.35006
[27] Gidas, B.; Spruck, J., A priori bounds for positive solutions of nonlinear elliptic equations, Commun. Partial Differ. Equ., 6, 883-901 (1981) · Zbl 0462.35041
[28] Kaper, H.; Kwong, M., Uniqueness of non-negative solutions of a class of semilinear elliptic equations, (Nonlinear Diffusion Equations and Their Equilibrium States II, vol. 13 (1988)), 1-17
[29] Liu, Z., Maximum principles and monotonicity of solutions for fractional p-equations in unbounded domains, J. Differ. Equ., 270, 1043-1078 (2021) · Zbl 1451.35038
[30] Li, C.; Wu, Z.; Xu, H., Maximum principles and Bǒcher type theorems, Proc. Natl. Acad. Sci. USA, 115, 6976-6979 (2018) · Zbl 1440.35343
[31] Lu, G.; Zhu, J., The maximum principles and symmetry results for viscosity solutions of fully nonlinear equations, J. Differ. Equ., 258, 2054-2079 (2015) · Zbl 1312.35033
[32] Lu, G.; Zhu, J., Symmetry and regularity of extremals of an integral equation related to the Hardy-Sobolev inequality, Calc. Var. Partial Differ. Equ., 42, 563-577 (2011) · Zbl 1231.35290
[33] Mcleod, K.; Serrin, J., Uniqueness of positive radial solutions of \(\operatorname{\Delta} u + f(u) = 0\) in \(R^n\), Arch. Ration. Mech. Anal., 99, 115-145 (1987) · Zbl 0667.35023
[34] Merle, F.; Zaag, H., Optimal estimates for blowup rate and behavior for nonlinear heat equations, Commun. Pure Appl. Math., 51, 139-196 (1998)
[35] Poláčik, P.; Quittner, P., Liouville type theorems and complete blow-up for indefinite superlinear parabolic equations, (Nonlinear Elliptic and Parabolic Problems. Nonlinear Elliptic and Parabolic Problems, Progr. Nonlinear Differential Equations Appl., vol. 64 (2005), Birkhäuser: Birkhäuser Basel), 391-402 · Zbl 1093.35037
[36] Poláčik, P.; Quittner, P.; Souplet, Ph., Singularity and decay estimates in superlinear problems via Liouville-type theorems, Part II: parabolic equations, Indiana Univ. Math. J., 56, 879-908 (2007) · Zbl 1122.35051
[37] Quaas, A.; Xia, A., Liouville type theorems for nonlinear elliptic equations and systems involving fractional Laplacian in the half space, Calc. Var. Partial Differ. Equ., 52, 641-659 (2015) · Zbl 1316.35291
[38] Quittner, P., Optimal Liouville theorems for superlinear parabolic problems, Duke Math. J., 170, 1113-1136 (2021) · Zbl 1469.35071
[39] Quittner, P.; Souplet, Ph., Superlinear Parabolic Problems. Blow-Up, Global Existence and Steady States, Birkhäuser Advanced Texts (2019), Birkhäuser: Birkhäuser Basel · Zbl 1423.35004
[40] Servadei, R.; Valdinoci, E., Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat., 58, 133-154 (2014) · Zbl 1292.35315
[41] Servadei, R.; Valdinoci, E., A Brezis-Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal., 12, 2445-2464 (2013) · Zbl 1302.35413
[42] Wang, P.; Chen, W., Hopf’s lemmas for parabolic fractional Laplacians and parabolic fractional p-Laplacians (2020)
[43] Wu, L., Sliding methods for the higher order fractional Laplacians, Fract. Calc. Appl. Anal., 24, 923-949 (2021) · Zbl 07382485
[44] Wu, L.; Chen, W., The sliding methods for the fractional p-Laplacian, Adv. Math., 361, Article 106933 pp. (2020) · Zbl 07152656
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.