×

Local wellposedness of coupled backward stochastic differential equations driven by \(G\)-Brownian motions. (English) Zbl 1481.60118

Summary: We investigate coupled forward backward stochastic differential equations driven by the \(G\)-Brownian motion \(( B_t )_{t \geq 0}\) which take the form, \[\begin{aligned} X_t = x + \int_0^t b(s, X_s, Y_s) d s + \int_0^t \sigma(s, X_s, Y_s) d B_s \\ Y_t = \psi( X_T) + \int_t^T g(s, X_s, Y_s, Z_s) d s - \int_t^T Z_s d B_s -( K_T - K_t), \end{aligned} \tag{0.1}\] where \(K\) being part of the solution, is required to be some decreasing \(G\)-martingale. Under the Lipschitz assumptions, the existence and uniqueness of the solution \((X, Y, Z, K)\) in small time duration is proved by using the contraction mapping principle. Different from the classical case, the integrability orders for components \(X, Y, Z, K\) of solutions are not homogeneous, which is the main characteristic for this problem under the \(G\)-expectation framework.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60G65 Nonlinear processes (e.g., \(G\)-Brownian motion, \(G\)-Lévy processes)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Antonelli, F., Backward-forward stochastic differential equations, Ann. Appl. Probab., 3, 03, 777-793 (1993) · Zbl 0780.60058
[2] Biagini, F.; Mancin, J.; Brandis, T., Robust mean-variance hedging via G-expectation, Stoch. Process. Appl., 129, 1287-1325 (2019) · Zbl 1478.60191
[3] Cao, D.; Tang, S., Reflected quadratic BSDEs driven by G-Brownian motions, Chin. Ann. Math., Ser. B (2019)
[4] Cheridito, P.; Soner, H.; Touzi, N.; Victoir, N., Second order backward stochastic differential equations and fully nonlinear parabolic pdes, Commun. Pure Appl. Math., 60, 7, 1081-1110 (2007) · Zbl 1121.60062
[5] Delarue, F., On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case, Stoch. Process. Appl., 99, 209-286 (2002) · Zbl 1058.60042
[6] Denis, L.; Hu, M.; Peng, S., Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion pathes, Potential Anal., 34, 139-161 (2011) · Zbl 1225.60057
[7] Epstein, L. G.; Ji, S., Ambiguous volatility and asset pricing in continuous time, Rev. Financ. Stud., 26, 1740-1786 (2013)
[8] Fouque, J.-P.; Pun, C.; Wong, H., Portfolio optimization with ambiguous correlation and stochastic volatilities, SIAM J. Control Optim., 54, 2309-2338 (2016) · Zbl 1410.91415
[9] Hu, K., The wellposedness of path-dependent multidimensional forward-backward SDE (2019)
[10] Hu, M.; Ji, S., Dynamic programming principle for stochastic recursive optimal control problem under G-framework, Stoch. Process. Appl., 127, 107-134 (2017) · Zbl 1349.93406
[11] Hu, M.; Peng, S., On representation theorem of G-expectations and paths of G-Brownian motion, Acta Math. Appl. Sin. Engl. Ser., 25, 3, 539-546 (2009) · Zbl 1190.60043
[12] Hu, M.; Ji, S.; Peng, S.; Song, Y., Backward stochastic differential equations driven by G-Brownian motion, Stoch. Process. Appl., 1241, 759-784 (2014) · Zbl 1300.60074
[13] Hu, M.; Ji, S.; Peng, S.; Song, Y., Comparison theorem, Feynman-Kac formula and Girsanov transformation for BSDEs driven by G-Brownian motion, Stoch. Process. Appl., 124, 2, 1170-1195 (2014) · Zbl 1300.60075
[14] Hu, Y.; Peng, S., Solution of forward-backward stochastic differential equations, Probab. Theory Relat. Fields, 103, 273-283 (1995) · Zbl 0831.60065
[15] Li, X.; Peng, S., Stopping times and related Itô’s calculus with G-Brownian motion, Stoch. Process. Appl., 121, 1492-1508 (2011) · Zbl 1225.60088
[16] Liu, G., Multi-dimensional BSDEs driven by G-Brownian motion and related system of fully nonlinear PDEs, Stoch. Int. J. Probab. Stoch. Process., 92, 6, 1-25 (2019)
[17] Liu, G., Exit times for semimartingales under nonlinear expectation, Stoch. Process. Appl., 130, 12, 7338-7362 (2020) · Zbl 1473.60070
[18] Lu, H.; Song, Y., Forward-backward stochastic differential equations driven by G-Brownian motion (2021)
[19] Ma, J.; Yong, J., Forward backward stochastic differential equations and their applications, Lect. Notes Math., 1702 (2007)
[20] Ma, J.; Protter, P.; Yong, J., Solving forward-backward stochastic differential equations explicitly—a four step scheme, Probab. Theory Relat. Fields, 98, 339-359 (1994) · Zbl 0794.60056
[21] Ma, J.; Wu, Z.; Zhang, D.; Zhang, J., On well-posedness of forward-backward SDES—a unified approach, Ann. Appl. Probab., 25, 04, 2168-2214 (2015) · Zbl 1319.60132
[22] Pardoux, E.; Tang, S., Forward-backward stochastic differential equations and quasilinear parabolic PDEs, Probab. Theory Relat. Fields, 114, 01, 123-150 (1999) · Zbl 0943.60057
[23] Peng, S., G-expectation, G-Brownian motion and related stochastic calculus of Itô type, (Stochastic Analysis and Applications. Stochastic Analysis and Applications, Abel Symp., vol. 2 (2007), Springer: Springer Berlin), 541-567 · Zbl 1131.60057
[24] Peng, S., Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation, Stoch. Process. Appl., 118, 12, 2223-2253 (2008) · Zbl 1158.60023
[25] Peng, S., Nonlinear Expectations and Stochastic Calculus Under Uncertainty, — with Robust CLT and G-Brownian Motion (2019), Springer-Verlag: Springer-Verlag Berlin Heidelberg · Zbl 1427.60004
[26] Peng, S.; Wu, Z., Fully coupled forward-backward stochastic differential equations and applications to optimal control, SIAM J. Control Optim., 37, 3, 825-843 (1999) · Zbl 0931.60048
[27] Peng, S.; Song, Y.; Zhang, J., A complete representation theorem for G-martingales, Stoch. Int. J. Probab. Stoch. Process., 86, 609-631 (2014) · Zbl 1337.60130
[28] Soner, M.; Touzi, N.; Zhang, J., Quasi-sure stochastic analysis through aggregation, Electron. J. Probab., 16, 1844-1879 (2011) · Zbl 1245.60062
[29] Soner, M.; Touzi, N.; Zhang, J., Wellposedness of second order backward SDEs, Probab. Theory Relat. Fields, 153, 1-2, 149-190 (2012) · Zbl 1252.60056
[30] Song, Y., Some properties on G-evaluation and its applications to G-martingale decomposition, Sci. China Math., 54, 2, 287-300 (2011) · Zbl 1225.60058
[31] Wang, B.; Yuan, M., Forward-backward stochastic differential equations driven by G-Brownian motion, Appl. Math. Comput., 349, 39-47 (2019) · Zbl 1428.60080
[32] Wang, F.; Zheng, G., Sample path properties of G-Brownian motion, J. Math. Anal. Appl., 467, 421-431 (2018) · Zbl 1405.60048
[33] Yong, J., Finding adapted solutions of forward-backward stochastic differential equations-method of continuation, Probab. Theory Relat. Fields, 107, 537-572 (1997) · Zbl 0883.60053
[34] Zhang, J., The wellposedness of FBSDEs (ii) (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.