Incompatible strain gradient elasticity of Mindlin type: screw and edge dislocations. (English) Zbl 1481.74081

In this paper, the author provides an extensive study regarding incompatible isotropic strain gradient elasticity theory of Mindlin type, by obtaining exact analytical solutions for the displacement fields, plastic distortion and dislocation densities, stress and elastic distortion fields of screw and edge dislocations.


74B99 Elastic materials
74C99 Plastic materials, materials of stress-rate and internal-variable type


Full Text: DOI


[1] Admal, NC; Marian, J.; Po, G., The atomistic representation of first strain-gradient elastic tensors, J. Mech. Phys. Solids, 99, 93-115 (2017) · Zbl 1444.74007
[2] Dederichs, PH; Leibfried, G., Elastic Green’s function for anisotropic cubic crystals, Phys. Rev., 188, 1175-1183 (1969)
[3] Delfani, MR; Tavakol, E., Uniformly moving screw dislocation in strain gradient elasticity, Eur. J. Mech. A Solids, 73, 349-355 (2019) · Zbl 1406.74079
[4] Delfani, MR; Taaghi, S.; Tavakol, E., Uniform motion of an edge dislocation within Mindlin’s first strain gradient elasticity, Int. J. Mech. Sci., 179, 105701 (2020)
[5] deWit, R., Theory of disclinations II, J. Res. Natl. Bureau Standards, 77A, 49-100 (1973)
[6] deWit, R., Theory of disclinations IV, J. Res. Natl. Bureau Standards, 77A, 607-658 (1973)
[7] Eringen, AC, Nonlocal Continuum Field Theories (2002), New York: Springer, New York · Zbl 1023.74003
[8] Gutkin, M.Y., Aifantis, E.C.: Screw dislocation in gradient elasticity. Scripta Mater. 35, 1353-1358 (1996)
[9] Gutkin, M.Y., Aifantis, E.C.: Edge dislocation in gradient elasticity. Scripta Mater. 36, 129-135 (1997)
[10] Gutkin, M.Y., Aifantis, E.C.: Dislocations in gradient elasticity. Scripta Mater. 40, 559-566 (1999)
[11] Gutkin, MY, Elastic behaviour of defects in nanomaterials I, Rev. Adv. Mater. Sci., 13, 125-161 (2006)
[12] Hirth, JP; Lothe, J., Theory of Dislocations (1982), New York: Wiley, New York · Zbl 1365.82001
[13] Jaunzemis, W., Continuum Mechanics (1967), New York: The Macmillan Company, New York · Zbl 0173.52103
[14] Karlis, GF; Charalambopoulos, A.; Polyzos, D., An advanced boundary element method for solving 2D and 3D static problems in Mindlin’s strain-gradient theory of elasticity, Int. J. Numer. Methods Eng., 83, 1407-1427 (2010) · Zbl 1202.74194
[15] Kröner, E., Kontinuumstheorie der Versetzungen und Eigenspannungen (1958), Berlin: Springer, Berlin · Zbl 0084.40003
[16] Lardner, RW, Dislocations in materials with couple stress, IMA J. Appl. Math., 7, 126-137 (1971) · Zbl 0219.73106
[17] Lardner, RW, Mathematical Theory of Dislocations and Fracture (1974), Toronto: University of Toronto Press, Toronto · Zbl 0301.73036
[18] Lazar, M.; Maugin, GA, Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity, Int. J. Eng. Sci., 43, 1157-1184 (2005) · Zbl 1211.74040
[19] Lazar, M., Maugin, G.A., Aifantis, E.C.: On dislocations in a special class of generalized elasticity. Phys. Stat. Sol. (b) 242, 2365-2390 (2005)
[20] Lazar, M.; Maugin, GA, Dislocations in gradient elasticity revisited, Proc. R. Soc. A, 462, 3465-3480 (2006) · Zbl 1149.74309
[21] Lazar, M.; Maugin, GA; Aifantis, EC, On the theory of nonlocal elasticity of bi-Helmholtz type and some applications, Int. J. Solids Struct., 43, 1404-1421 (2006) · Zbl 1120.74342
[22] Lazar, M.; Anastassiadis, C., The gauge theory of dislocations: static solutions of screw and edge dislocations, Philos. Mag., 89, 199-231 (2009)
[23] Lazar, M., Non-singular dislocation loops in gradient elasticity, Phys. Lett. A, 376, 1757-1758 (2012)
[24] Lazar, M., The fundamentals of non-singular dislocations in the theory of gradient elasticity: dislocation loops and straight dislocations, Int. J. Solids Struct., 50, 352-362 (2013)
[25] Lazar, M., On gradient field theories: gradient magnetostatics and gradient elasticity, Philos. Mag., 94, 2840-2874 (2014)
[26] Lazar, M., Irreducible decomposition of strain gradient tensor in isotropic strain gradient elasticity, Zeitschrift für angewandte Mathematik und Mechanik (ZAMM), 96, 1291-1305 (2016)
[27] Lazar, M., Non-singular dislocation continuum theories: strain gradient elasticity versus Peierls-Nabarro model, Philos. Mag., 97, 3246-3275 (2017)
[28] Lazar, M.; Po, G., On Mindlin’s isotropic strain gradient elasticity: Green tensors, regularization, and operator-split, J. Micromech. Mol. Phys., 3, 3-4, 1840008 (2018)
[29] Lazar, M., A non-singular continuum theory of point defects using gradient elasticity of bi-Helmholtz type, Philos. Mag., 99, 1563-1601 (2019)
[30] Lazar, M.; Agiasofitou, E.; Po, G., Three-dimensional nonlocal anisotropic elasticity: a generalized continuum theory of Ångström-mechanics, Acta Mech., 231, 743-781 (2020) · Zbl 1435.74009
[31] Li, S.; Wang, G., Introduction to Micromechanics and Nanomechanics (2008), Singapore: World Scientific, Singapore · Zbl 1169.74001
[32] Mindlin, RD, Micro-structure in linear elasticity, Arch. Ration. Mech. Anal., 16, 51-78 (1964) · Zbl 0119.40302
[33] Mindlin, RD; Eshel, NN, On first strain gradient theory in linear elasticity, Int. J. Solids Struct., 4, 109-124 (1968) · Zbl 0166.20601
[34] Mindlin, RD, Elasticity, piezoelectricity and crystal lattice dynamics, J. Elast., 2, 217-282 (1972)
[35] MODEL (2014), https://github.com/giacomo-po/MoDELib
[36] Mura, T., Micromechanics of Defects in Solids (1987), Dordrecht: Martinus Nijhoff, Dordrecht · Zbl 0652.73010
[37] Ortner, N.; Wagner, P., Fundamental Solutions of Linear Partial Differential Operators (2015), Cham: Springer, Cham · Zbl 1336.35003
[38] Pellegrini, Y-P, Dynamic Peierls-Nabarro equations for elastically isotropic crystals, Phys. Rev. B, 81, 024101 (2010)
[39] Po, G.; Lazar, M.; Seif, D.; Ghoniem, N., Singularity-free dislocation dynamics with strain gradient elasticity, J. Mech. Phys. Solids, 68, 161-178 (2014) · Zbl 1328.74016
[40] Po, G.; Admal, NC; Lazar, M., The Green tensor of Mindlin’s anisotropic first strain gradient elasticity, Mater. Theory, 3, 3 (2019)
[41] Read, WT Jr, Dislocations in Crystals (1953), New York: McGraw-Hill, New York · Zbl 0051.23003
[42] Rogula, D., Some basic solutions in strain gradient elasticity theory of an arbitrary order, Arch. Mech., 25, 43-68 (1973) · Zbl 0255.73019
[43] Ru, CQ; Aifantis, EC, A simple approach to solve boundary-value problems in gradient elasticity, Acta Mech., 101, 59-68 (1993) · Zbl 0783.73015
[44] Shodja, H.M., Tehranchi, A.: A formulation for the characteristic lengths of fcc materials in first strain gradient elasticity via Sutton-Chen potential, Philos. Mag. 90, 1893-1913 (2010), Corrigendum, Philos. Mag. 92, 1170-1171 (2012)
[45] Shodja, HM; Zaheri, A.; Tehranchi, A., Ab initio calculations of characteristic lengths of crystalline materials in first strain gradient elasticity, Mech. Mater., 61, 73-78 (2013)
[46] Shodja, H.M.: personal communication, October (2015)
[47] Toupin, R.A., Grazis, D.C.: Surface effects and initial stress in continuum and lattice models of elastic crystals, in: Proceedings of the International Conference on Lattice Dynamics, Copenhagen, Edited by R.F. Wallis, Pergamon Press pp. 597-602 (1964)
[48] Webb, EB; Zimmerman, JA; Seel, SC, Reconsideration of continuum thermomechanical quantities in atomic scale simulations, Math. Mech. Solids, 13, 3-4, 221-266 (2008) · Zbl 1161.74306
[49] Zauderer, E., Partial Differential Equations of Applied Mathematics (1983), New York: John Wiley & Sons Inc, New York · Zbl 0551.35002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.