×

Inertial methods for finding minimum-norm solutions of the split variational inequality problem beyond monotonicity. (English) Zbl 07411111

Summary: In solving the split variational inequality problems, very few methods have been considered in the literature and most of these few methods require the underlying operators to be co-coercive. This restrictive co-coercive assumption has been dispensed with in some methods, many of which require a product space formulation of the problem. However, it has been discovered that this product space formulation may cause some potential difficulties during implementation and its approach may not fully exploit the attractive splitting structure of the split variational inequality problem. In this paper, we present two new methods with inertial steps for solving the split variational inequality problems in real Hilbert spaces without any product space formulation. We prove that the sequence generated by these methods converges strongly to a minimum-norm solution of the problem when the operators are pseudomonotone and Lipschitz continuous. Also, we provide several numerical experiments of the proposed methods in comparison with other related methods in the literature.

MSC:

47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
47H10 Fixed-point theorems
49J20 Existence theories for optimal control problems involving partial differential equations
49J40 Variational inequalities
65-XX Numerical analysis
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alakoya, T.O., Jolaoso, L.O., Mewomo, O.T.: Modified inertia subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems Optimization. doi:10.1080/02331934.2020.1723586 (2020) · Zbl 1468.65052
[2] Alakoya, T.O., Taiwo, A., Mewomo, O.T., Cho, Y.J.: An iterative algorithm for solving variational inequality, generalized mixed equilibrium, convex minimization and zeros problems for a class of nonexpansive-type mappings. Ann. Univ. Ferrara Sez. VII Sci. Mat. doi:10.1007/s11565-020-00354-2 · Zbl 1472.65077
[3] Alvarez, F., Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space, SIAM J. Optim., 14, 3, 773-782 (2004) · Zbl 1079.90096
[4] Alvarez, F.; Attouch, H., An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9, 1-2, 3-11 (2001) · Zbl 0991.65056
[5] Aremu, K.O., Izuchukwu, C., Ogwo, G.N., Mewomo, O.T.: Multi-step Iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. J. Ind. Manag. Optim. doi:10.3934/jimo.2020063 (2020) · Zbl 1476.65084
[6] Attouch, H.; Peypouquet, J.; Redont, P., A dynamical approach to an inertial forward-backward algorithm for convex minimization, SIAM J. Optim., 24, 1, 232-256 (2014) · Zbl 1295.90044
[7] Beck, A.; Teboulle, M., A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2, 1, 183-202 (2009) · Zbl 1175.94009
[8] Bot, R.I., Csetnek, E.R., Vuong, P.T.: The forward-backward-forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces. arXiv:1808.08084 · Zbl 1443.90268
[9] Byrne, C., A unified treatment for some iterative algorithms in signal processing and image reconstruction, Inv. Probl., 20, 103-120 (2004) · Zbl 1051.65067
[10] Ceng, LC; Ansari, QH; Yao, JC, Relaxed extragradient methods for finding minimum-norm solutions of the split feasibility problem, Nonlinear Anal., 75, 2116-2125 (2012) · Zbl 1236.47066
[11] Censor, Y.; Bortfeld, T.; Martin, B.; Trofimov, A., A unified approach for inversion problems in intensity modulated radiation therapy, Phys. Med. Biol., 51, 2353-2365 (2006)
[12] Censor, Y.; Elfving, T., A multiprojection algorithm using Bregman projections in product space, Numer. Algorithms, 8, 221-239 (1994) · Zbl 0828.65065
[13] Censor, Y.; Gibali, A.; Reich, S., Algorithms for the split variational inequality problem, Numer. Algorithms, 59, 301-323 (2012) · Zbl 1239.65041
[14] Censor, Y.; Gibali, A.; Reich, S., The split variational inequality problem, The Technion-Israel Institute of Technology, Haifa, 59, 301-323 (2012) · Zbl 1239.65041
[15] Censor, Y.; Gibali, A.; Reich, S., The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 148, 318-335 (2011) · Zbl 1229.58018
[16] Cholamjiak, P.; Shehu, Y., Inertial forward-backward splitting method in Banach spaces with application to compressed sensing, Appl. Math., 64, 409-435 (2019) · Zbl 1516.47104
[17] Cholamjiak, P., Thong, D.V., Cho, Y.J.: A novel inertial projection and contraction method for solving pseudomonotone variational inequality problems. Acta Appl. Math. doi:10.1007/s10440-019-00297-7 (2019) · Zbl 1473.65076
[18] Cottle, RW; Yao, JC, Pseudo-monotone complementarity problems in Hilbert space, J. Optim. Theory Appl., 75, 281-295 (1992) · Zbl 0795.90071
[19] Dong, Q.; Cho, Y.; Zhong, L.; Rassias, TM, Inertial projection and contraction algorithms for variational inequalities, J. Glob. Optim., 70, 687-704 (2018) · Zbl 1390.90568
[20] Fichera, G., Sul pproblem elastostatico di signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 34, 138-142 (1963) · Zbl 0128.18305
[21] Gibali, A.; Shehu, Y., An efficient iterative method for finding common fixed point and variational inequalities in Hilbert, Optimization, 68, 1, 13-32 (2019) · Zbl 07007063
[22] Gibali, A.; Thong, DV; Tuan, PA, Two simple projection-type methods for solving variational inequalities, Anal. Math. Phys., 9, 2203-2225 (2019) · Zbl 07152002
[23] Han, DR; He, HJ; Yang, H.; Yuan, XM, A customized Douglas-Rachford splitting algorithm for separable convex minimization with linear constraints, Numer. Math., 127, 167-200 (2014) · Zbl 1295.90046
[24] He, H.; Ling, C.; Xu, HK, A relaxed projection method for split variational inequalities, J. Optim. Theory Appl., 166, 213-233 (2015) · Zbl 1323.65079
[25] He, B-S; Yang, Z-H; Yuan, X-M, An approximate proximal-extragradient type method for monotone variational inequalities, J. Math. Anal. Appl., 300, 362-374 (2004) · Zbl 1068.65087
[26] Hendrickx, JM; Olshevsky, A., Matrix P-norms are NP-hard to approximate if \({P\neq } 1, 2,\infty P\) ≠ 1, 2,∞, SIAM J. Matrix Anal. Appl., 31, 2802-2812 (2010) · Zbl 1216.68117
[27] Izuchukwu, C., Mebawondu, A.A., Mewomo, O.T.: A new method for solving split variational inequality problems without co-coerciveness. J. Fixed Point Theory Appl. 22(4). Art. No. 98, 23 pp (2020) · Zbl 1484.47156
[28] Izuchukwu, C., Ogwo, G.N., Mewomo, O.T.: An inertial method for solving generalized split feasibility problems over the solution set of monotone variational inclusions. Optimization. doi:10.1080/02331934.2020.1808648 (2020) · Zbl 07507027
[29] Izuchukwu, C.; Okeke, CC; Mewomo, OT, Systems of variational inequality problem and multiple-sets split equality fixed point problem for infinite families of multivalued type-one demicontractive-type mappings, Ukrainian Math. J., 71, 1480-1501 (2019) · Zbl 07622991
[30] Jolaoso, LO; Alakoya, TO; Taiwo, A.; Mewomo, OT, A parallel combination extragradient method with Armijo line searching for finding common solution of finite families of equilibrium and fixed point problems, Rend. Circ. Mat. Palermo II, 69, 3, 711-735 (2020) · Zbl 1461.65196
[31] Jolaoso, L.O., Alakoya, T.O., Taiwo, A., Mewomo, O.T.: Inertial extragradient method via viscosity approximation approach for solving Equilibrium problem in Hilbert space Optimization. doi:10.1080/02331934.2020.1716752 (2020) · Zbl 1459.65097
[32] Jolaoso, LO; Taiwo, A.; Alakoya, TO; Mewomo, OT, Strong convergence theorem for solving pseudo-monotone variational inequality problem using projection method in a reflexive Banach space, J. Optim. Theory Appl., 185, 3, 744-766 (2020) · Zbl 07211749
[33] Khan, S.H., Alakoya, T.O., Mewomo, O.T.: Relaxed projection methods with self-adaptive step size for solving variational inequality and fixed point problems for an infinite family of multivalued relatively nonexpansive mappings in Banach Spaces. Math. Comput. Appl., accepted . to appear (2020)
[34] Kim, JK; Salahuddin, S.; Lim, WH, General nonconvex split variational inequality problems, Korean J. Math., 25, 469-481 (2017) · Zbl 1467.47033
[35] Korpelevich, GM, An extragradient method for finding saddle points and for other problems, Ekon. Mat. Metody, 12, 747-756 (1976) · Zbl 0342.90044
[36] Maingé, PE, Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 325, 1, 469-479 (2007) · Zbl 1111.47058
[37] Moudafi, A., Split monotone variational inclusions, J. Optim. Theory Appl., 150, 275-283 (2011) · Zbl 1231.90358
[38] Ogbuisi, FU; Mewomo, OT, Convergence analysis of an inertial accelerated iterative algorithm for solving split variational inequality problems, Adv. Pure Appl, Math., 10, 4, 339-353 (2019) · Zbl 07138594
[39] Ogwo, GN; Izuchukwu, C.; Aremu, KO; Mewomo, OT, A viscosity iterative algorithm for a family of monotone inclusion problems in an Hadamard space, Bull. Belg. Math. Soc. Simon Stevin, 27, 1, 127-152 (2020) · Zbl 1442.47050
[40] Ogwo, GN; Izuchukwu, C.; Aremu, KO; Mewomo, OT, On 𝜃-generalized demimetric mappings and monotone operators in Hadamard spaces, Demonstr. Math., 53, 1, 95-111 (2020) · Zbl 1497.47096
[41] Pham, VH; Nguyen, DH; Anh, TV, A strongly convergent modified Halpern subgradient extragradient method for solving the split variational inequality problem, Vietnam J. Math., 48, 187-204 (2020) · Zbl 1437.49046
[42] Palta, J.R., Mackie, T.R.: Intensity modulated radiation therapy: The state of the art. Medical Physical Monograph. American Association of Physists in Medicine, 29. Medical Physical Publishing, Madison (2003)
[43] Polyak, BT, Some methods of speeding up the convergence of iteration methods, U.S.S.R. Comput. Math. and Math. Phys., 4, 5, 1-17 (1964) · Zbl 0147.35301
[44] Reich, S.; Tuyen, TM, A new algorithm for solving the split common null point problem in Hilbert spaces, Numer. Algorithms, 83, 789-805 (2020) · Zbl 1513.47128
[45] Reich, S.; Tuyen, TM, Two projection methods for solving the multiple-set split common null point problem in Hilbert spaces, Optimization, 69, 1913-1934 (2020) · Zbl 07249879
[46] Reich, S.; Tuyen, TM; Trang, NM, Parallel iterative methods for solving the split common fixed point problem in Hilbert spaces, Numer. Funct. Anal. Optim., 41, 778-805 (2020) · Zbl 1442.47064
[47] Shehu, Y., Cholamjiak, P.: Iterative method with inertial for variational inequalities in Hilbert spaces. Calcolo 56(1) (2019) · Zbl 1482.47127
[48] Shehu, Y.; Li, XH; Dong, QL, An efficient projection-type method for monotone variational inequalities in Hilbert spaces, Numer. Algorithms, 84, 365-388 (2020) · Zbl 07202163
[49] Shehu, Y., Dong, Q.L., Jiang, D.: Single projection method for pseudo-monotone variational inequality in Hilbert spaces Optimization. doi:10.1080/02331934.2018.1522636 (2018) · Zbl 1431.49009
[50] Süli, E.; Mayers, DF, An introduction to numerical analysis (2003), Cambridge: Cambridge University Press, Cambridge · Zbl 1033.65001
[51] Stampacchia, G.: Variational inequalities. In: Theory and Applications of Monotone Operators,Proceedings of the NATO Advanced Study Institute, Venice, Italy, pp 102-192. Edizioni Odersi, Gubbio (1968)
[52] Taiwo, A., Alakoya, T.O., Mewomo, O.T.: Halpern-type iterative process for solving split common fixed point and monotone variational inclusion problem between Banach spaces. Numer. Algorithms. doi:10.1007/s11075-020-00937-2 (2020) · Zbl 07331334
[53] Taiwo, A.; Jolaoso, LO; Mewomo, OT, General alternative regularization method for solving Split Equality Common Fixed Point Problem for quasi-pseudocontractive mappings in Hilbert spaces, Ric. Mat., 69, 1, 235-259 (2020) · Zbl 1439.47056
[54] Taiwo, A., Jolaoso, L.O., Mewomo, O.T.: Inertial-type algorithm for solving split common fixed-point problem in Banach spaces. J. Sci. Comput. doi:10.1007/s10915-020-01385-9 · Zbl 07301290
[55] Thong, DV; Hieu, DV, Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problems, Numer. Algorithms, 80, 1283-1307 (2019) · Zbl 07042050
[56] Thong, DV; Shehu, Y.; Iyiola, OS, Weak and strong convergence theorems for solving pseudo-monotone variational inequalities with non-Lipschitz mappings, Numer. Algorithms, 84, 795-823 (2019) · Zbl 1439.47047
[57] Tian, M.; Jiang, B-N, Viscosity approximation methods for a class of generalized split feasibility problems with variational inequalities in Hilbert space, Numer. Funct. Anal. Optim., 40, 902-923 (2019) · Zbl 1412.58008
[58] Tian, M., Jiang, B.-N.: Weak convergence theorem for a class of split variational inequality problems and applications in Hilbert space. J. Inequal. Appl., (123). doi:10.1186/s13660-017-1397-9 (2017) · Zbl 1367.58007
[59] Tseng, P., A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 38, 431-446 (2000) · Zbl 0997.90062
[60] Wu, Q.; Mohan, R.; Niemierko, A.; Schmidt-Ullrich, R., Optimization of intensity-modulated radiotherapy plan based on the equivalent uniform dose, Int. J. Radiat. Oncol. Biol. Phys., 52, 224-235 (2003)
[61] Xu, HK, Iterative methods for the split feasibility problem in infinite dimensional Hilbert spaces, Inv. Probl., 26, 105018 (2010) · Zbl 1213.65085
[62] Yang, J.; Liu, H.; Liu, Z., Modified subgradient extragradient algorithms for solving monotone variational inequalities, Optimization, 67, 12, 2247-2258 (2018) · Zbl 1415.49010
[63] Zhao, J., Solving split equality fixed-point problem of quasi-nonexpansive mappings without prior knowledge of operators norms, Optimization, 64, 2619-2630 (2015) · Zbl 1326.47104
[64] Zhao, J.; Hou, D., A self-adaptive iterative algorithm for the split common fixed point problems, Numer. Algorithms, 82, 1047-1063 (2019) · Zbl 07128076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.