×

Relativistic gravitational phase transitions and instabilities of the Fermi gas. (English) Zbl 1476.85006

MSC:

85A15 Galactic and stellar structure
82D05 Statistical mechanics of gases
81V74 Fermionic systems in quantum theory
82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics
83C15 Exact solutions to problems in general relativity and gravitational theory
83C40 Gravitational energy and conservation laws; groups of motions
80A10 Classical and relativistic thermodynamics
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
76E20 Stability and instability of geophysical and astrophysical flows

Citations:

Zbl 1327.83201
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Roupas Z 2015 Relativistic gravothermal instabilities Class. Quantum Grav.32 135023 · Zbl 1327.83201
[2] Antonov V A 1962 Solution of the Problem of Stability of Stellar System with Emden’s Density Law and the Spherical Distribution of Velocities (Leningrad: Vestnik Leningradskogo Universiteta)
[3] Lynden-Bell D and Wood R 1968 The gravo-thermal catastrophe in isothermal spheres and the onset of red-giant structure for stellar systems Mon. Not. R. Astron. Soc.138 495
[4] Emden R 1907 Gaskugeln (Leipzig: BSB Teubner)
[5] Chandrasekhar S 1938 An Introduction to the Study of Stellar Structure (Chicago, IL: Dover)
[6] Katz J 1978 On the number of unstable modes of an equilibrium Mon. Not. R. Astron. Soc.183 765-70 · Zbl 0374.70017
[7] Horwitz G and Katz J 1978 Steepest descent technique and stellar equilibrium statistical mechanics. III stability of various ensembles Astrophys. J.222 941-58
[8] Campa A, Dauxois T, Fanelli D and Ruffo S 2014 Physics of Long-Range Interacting Systems (Oxford: Oxford University Press) · Zbl 1303.82003
[9] Hill T L 1956 Statistical Mechanics: Principles and Selected Applications (New York: Dover)
[10] Padmanabhan T 1989 Antonov instability and gravothermal catastrophe—revisited Astrophys. J. Supp.71 651-64
[11] Chavanis P H 2002 Gravitational instability of finite isothermal spheres Astron. Astrophys.381 340-56 · Zbl 1060.85511
[12] Chavanis P H 2003 Gravitational instability of isothermal and polytropic spheres Astron. Astrophys.401 15-42 · Zbl 1022.85001
[13] de Vega H J and Sánchez N 2002 Statistical mechanics of the self-gravitating gas: I. Thermodynamic limit and phase diagrams Nucl. Phys. B 625 409-59 · Zbl 1049.82518
[14] de Vega H J and Sánchez N 2002 Statistical mechanics of the self-gravitating gas: II. Local physical magnitudes and fractal structures Nucl. Phys. B 625 460-94 · Zbl 1049.82519
[15] Padmanabhan T 1990 Statistical mechanics of gravitating systems Phys. Rep.188 285-362 · Zbl 1211.82001
[16] Katz J 2003 Thermodynamics and self-gravitating systems Found. Phys.33 223-69
[17] Chavanis P H 2006 Phase transitions in self-gravitating systems Int. J. Mod. Phys. B 20 3113-98 · Zbl 1121.82304
[18] Sorkin R D, Wald R M and Jiu Z Z 1981 Entropy of self-gravitating radiation Gen. Relativ. Gravit.13 1127-46
[19] Chavanis P H 2002 Gravitational instability of finite isothermal spheres in general relativity. Analogy with neutron stars Astron. Astrophys.381 709-30
[20] Chavanis P H 2008 Relativistic stars with a linear equation of state: analogy with classical isothermal spheres and black holes Astron. Astrophys.483 673-98 · Zbl 1148.85303
[21] Roupas Z 2013 Thermodynamical instabilities of perfect fluid spheres in general relativity Class. Quantum Grav.30 115018 · Zbl 1271.83020
[22] Roupas Z 2018 Relativistic gravothermal instability: the weight of heat (arXiv:1809.04408)
[23] Hertel P and Thirring W 1971 Free energy of gravitating fermions Commun. Math. Phys.24 22-36 · Zbl 0227.47034
[24] Bilić N and Viollier R D 1997 Gravitational phase transition of fermionic matter Phys. Lett. B 408 75-80
[25] Fowler R H 1926 On dense matter Mon. Not. R. Astron. Soc.87 114-22 · JFM 52.1025.01
[26] Stoner E 1929 Phil. Mag.7 63
[27] Milne E A 1930 The analysis of stellar structure Mon. Not. R. Astron. Soc.91 4-55 · JFM 56.1357.02
[28] Chandrasekhar S 1931 Xlviii. The density of white dwarf stars London Edinburgh Dublin Phil. Mag. J. Sci.11 592-6 · Zbl 0001.11103
[29] Oppenheimer J R and Volkoff G M 1939 On massive neutron cores Phys. Rev.55 374-81 · Zbl 0020.28501
[30] Roupas Z 2015 Thermal mass limit of neutron cores Phys. Rev. D 91 023001
[31] Burrows A and Lattimer J M 1986 The birth of neutron stars Astrophys. J.307 178-96
[32] Prakash M, Bombacia I, Prakasha M, Ellisb P J, Lattimerd J M and Knorren R 1997 Composition and structure of protoneutron stars Phys. Rep.280 1-77
[33] Lattimer J M and Prakash M 2016 The equation of state of hot, dense matter and neutron stars Phys. Rep.621 127-64
[34] Bilić N and Viollier R D 1999 Gravitational phase transition of fermionic matter in a general-relativistic framework Eur. Phys. J. C 11 173-80
[35] Alberti G and Chavanis P-H 2018 Caloric curves of self-gravitating fermions in general relativity (arXiv:1808.01007)
[36] Landsberg P T and Dunning-Davies J 1965 Statistical thermodynamics of the ideal relativistic quantum gas Statistical Mechanics of Equilibrium and Non-equilibrium ed J Meixner (Amsterdam: North-Holland) p 36
[37] Cox J P and Giuli R T 1968 Principles of Stellar Structure (New York: Gordon and Breach)
[38] Weinberg S 1972 Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Hoboken, N J: John Wiley & Sons)
[39] Tolman R C 1930 On the weight of heat and thermal equilibrium in general relativity Phys. Rev.35 904 · JFM 56.0744.02
[40] Tolman R C and Ehrenfest P 1930 Temperature equilibrium in a static gravitational field Phys. Rev.36 1791-8
[41] Roupas Z 2015 Corrigendum: Thermodynamical instabilities of perfect fluid spheres in general relativity Class. Quantum Grav.32 119501 · Zbl 1330.83011
[42] Poincaré H 1885 Sur l’équilibre d’une masse fluide animée d’un mouvement de rotation Acta. Math.7 259 · JFM 17.0864.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.