×

A TFC-based homotopy continuation algorithm with application to dynamics and control problems. (English) Zbl 1490.65095

Summary: A method for solving zero-finding problems is developed by tracking homotopy paths, which define connecting channels between an auxiliary problem and the objective problem. Current algorithms’ success highly relies on empirical knowledge, due to manually, inherently selected homotopy paths. This work introduces a homotopy method based on the Theory of Functional Connections (TFC). The TFC-based method implicitly defines infinite homotopy paths, from which the most promising ones are selected. A two-layer continuation algorithm is devised, where the first layer tracks the homotopy path by monotonously varying the continuation parameter, while the second layer recovers possible failures resorting to a TFC representation of the homotopy function. Compared to pseudo-arclength methods, the proposed TFC-based method retains the simplicity of direct continuation while allowing a flexible path switching. Numerical simulations illustrate the effectiveness of the presented method.

MSC:

65H20 Global methods, including homotopy approaches to the numerical solution of nonlinear equations

Software:

BVPh; TFC
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Easterling, D. R.; Watson, L. T.; Ramakrishnan, N., Probability-one homotopy methods for constrained clustering, J. Comput. Appl. Math., 343, 602-618 (2018) · Zbl 1478.62162
[2] Haberkorn, T.; Martinon, P.; Gergaud, J., Low-thrust minimum-fuel orbital transfer: a homotopic approach, J. Guid. Control Dyn., 27, 6, 1046-1060 (2004)
[3] Bulirsch, R.; Montrone, F.; Pesch, H. J., Abort landing in the presence of windshear as a minimax optimal control problem, part 2: multiple shooting and homotopy, J. Optim. Theory Appl., 70, 2, 223-254 (1991) · Zbl 0752.49017
[4] Hermant, A., Optimal control of the atmospheric reentry of a space shuttle by an homotopy method, Optim. Control Appl. Methods, 32, 6, 627-646 (2011) · Zbl 1272.49088
[5] Ji, S.; Watson, L. T.; Carin, L., Semisupervised learning of hidden markov models via a homotopy method, IEEE Trans. Pattern Anal., 31, 2, 275-287 (2009)
[6] Allgower, E. L.; Georg, K., Introduction to Numerical Continuation Methods (2003), SIAM: SIAM Philadelphia · Zbl 1036.65047
[7] Rahimian, S. K.; Jalali, F.; Seader, J. D.; White, R. E., A new homotopy for seeking all real roots of a nonlinear equation, Comput. Chem. Eng., 35, 3, 403-411 (2011)
[8] Dai, Y.; Kim, S.; Kojima, M., Computing all nonsingular solutions of cyclic-n polynomial using polyhedral homotopy continuation methods, J. Comput. Appl. Math., 152, 1-2, 83-97 (2003) · Zbl 1018.65068
[9] Wu, T.-M., Solving the nonlinear equations by the Newton-homotopy continuation method with adjustable auxiliary homotopy function, Appl. Math. Comput., 173, 1, 383-388 (2006) · Zbl 1090.65060
[10] Pan, B.; Lu, P.; Pan, X.; Ma, Y., Double-homotopy method for solving optimal control problems, J. Guid. Control Dyn., 39, 8, 1706-1720 (2016)
[11] Pan, B.; Pan, X.; Zhang, S., A new probability-one homotopy method for solving minimum-time low-thrust orbital transfer problems, Astrophys. Space Sci., 363, 9, 198 (2018)
[12] Ohtsuka, T.; Fujii, H., Stabilized continuation method for solving optimal control problems, J. Guid. Control Dyn., 17, 5, 950-957 (1994) · Zbl 0822.49025
[13] Kotamraju, G. R.; Akella, M. R., Stabilized continuation methods for boundary value problems, Appl. Math. Comput., 112, 2-3, 317-332 (2000) · Zbl 1023.65047
[14] Haberkorn, T.; Martinon, P.; Gergaud, J., Low-thrust minimum-fuel orbital transfer: a homotopic approach, J. Guid. Control Dyn., 27, 6, 1046-1060 (2004)
[15] Hao, W.; Zheng, C., An adaptive homotopy method for computing bifurcations of nonlinear parametric systems, J. Sci. Comput., 82, 3, 53 (2020) · Zbl 1437.37111
[16] Carstensen, C.; Gedicke, J.; Mehrmann, V.; Miedlar, A., An adaptive homotopy approach for non-selfadjoint eigenvalue problems, Numer. Math., 119, 3, 557-583 (2011) · Zbl 1263.65106
[17] Bates, D. J.; Hauenstein, J. D.; Sommese, A. J., Efficient path tracking methods, Numer. Algorithms, 58, 4, 451-459 (2011) · Zbl 1230.65059
[18] Brown, D. A.; Zingg, D. W., A monolithic homotopy continuation algorithm with application to computational fluid dynamics, J. Comput. Phys., 321, 55-75 (2016) · Zbl 1349.65175
[19] Brown, D. A.; Zingg, D. W., Monolithic homotopy continuation with predictor based on higher derivatives, J. Comput. Appl. Math., 346, 26-41 (2019) · Zbl 1452.65096
[20] Yamamura, K., Simple algorithms for tracing solution curves, IEEE Trans. Circuits-I, 40, 8, 537-541 (1993) · Zbl 0802.65150
[21] Kalaba, R.; Tesfatsion, L., Solving nonlinear equations by adaptive homotopy continuation, Appl. Math. Comput., 41, 2, 99-115 (1991) · Zbl 0717.65031
[22] Wolf, D. M.; Sanders, S. R., Multiparameter homotopy methods for finding DC operating points of nonlinear circuits, IEEE Trans. Circuits-I, 43, 10, 824-838 (1996)
[23] Wayburn, T. L.; Seader, J. D., Homotopy continuation methods for computer-aided process design, Comput. Chem. Eng., 11, 1, 7-25 (1987)
[24] Nocedal, J.; Wright, S., Numerical Optimization, 296-302 (2006), Springer: Springer New York · Zbl 1104.65059
[25] Liao, S., Homotopy Analysis Method in Nonlinear Differential Equations (2012), Springer and Higher Education Press: Springer and Higher Education Press Berlin and Beijing · Zbl 1253.35001
[26] Liao, S., On the homotopy analysis method for nonlinear problems, Appl. Math. Comput., 147, 2, 499-513 (2004) · Zbl 1086.35005
[27] Liao, S., Notes on the homotopy analysis method: some definitions and theorems, Commun. Nonlinear Sci., 14, 4, 983-997 (2009) · Zbl 1221.65126
[28] Mortari, D., The theory of connections: connecting points, Mathematics, 5, 4, 57 (2017) · Zbl 06898686
[29] Leake, C.; Johnston, H.; Mortari, D., The multivariate theory of functional connections: theory, proofs, and application in partial differential equations, Mathematics, 8, 8, 1303 (2020)
[30] Mortari, D.; Leake, C., The multivariate theory of connections, Mathematics, 7, 3, 296 (2019)
[31] Mortari, D.; Johnston, H.; Smith, L., High accuracy least-squares solutions of nonlinear differential equations, J. Comput. Appl. Math., 352, 293-307 (2019) · Zbl 1462.65153
[32] Bhaya, A.; Pazos, F. A., Homotopy methods for zero finding from a learning/control liapunov function viewpoint, (2013 International Conference on Control, Decision and Information Technologies (CoDIT) (2013)), 881-886
[33] Watson, L. T., Probability-one homotopies in computational science, J. Comput. Appl. Math., 140, 1-2, 785-807 (2002) · Zbl 0996.65055
[34] Chow, S. N.; Mallet-Paret, J.; Yorke, J. A., Finding zeroes of maps: homotopy methods that are constructive with probability one, Math. Comp., 32, 143, 887-899 (1978) · Zbl 0398.65029
[35] Branin, F. H., Widely convergent method for finding multiple solutions of simultaneous nonlinear equations, IBM J. Res. Dev., 16, 5, 504-522 (1972) · Zbl 0271.65034
[36] Zufiria, P. J.; Guttalu, R. S., On the role of singularities in Branin’s method from dynamic and continuation perspectives, Appl. Math. Comput., 130, 2-3, 593-618 (2002) · Zbl 1040.65042
[37] Bryson, A. E.; Ho, Y.-C., Applied Optimal Control: Optimization, Estimation and Control (1975), Taylor and Francis: Taylor and Francis New York
[38] Watson, L. T., Globally convergent homotopy methods: a tutorial, Appl. Math. Comput., 31, 369-396 (1989) · Zbl 0689.65033
[39] Watson, L. T.; Wang, C. Y., A homotopy method applied to elastica problems, Int. J. Solids Struct., 17, 1, 29-37 (1981) · Zbl 0452.73071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.