×

Numerical solutions for tunnels excavated in strain-softening rock masses considering a combined support system. (English) Zbl 1481.74546

Summary: In this article, an alternative numerical procedure to calculate displacements and stresses of supported circular tunnels is proposed, considering the whole process of tunnel advancement, and sequential installation of the primary and secondary support systems. In the derivation, the plastic area of the rock mass is divided into a large number of annuli around the tunnel, and then the Finite Difference Method is employed. First, the strain-softening behaviour model is taken to simulate the post-failure behaviour of the rock mass. Furthermore, the Mohr-Coulomb or the Hoek-Brown failure criteria can be chosen, a non-associated plastic flow rule is assumed and the dilatancy of the rock mass is considered. After that, the fictitious support forces concept is used to simulate the process of tunnel advancement, and thus, the three-dimensional effect of the tunnel face is considered. Finally, the solutions of displacements and stresses for the rock mass and the supports can be obtained, by using the compatibility conditions of stresses and displacements at both rock-support and support-support interfaces. The results obtained from these solutions agree well with those of the self-similar solutions for circular openings, and the compatibility conditions of supported tunnels were verified. The proposed method has been compared with the convergence-confinement method. Parametric analyses are then carried out to investigate the sensitivity of support forces and displacements to the rock mass behaviour model selection. Then, the application of the proposed solutions in the design of tunnels is presented. The proposed method provides a convenient alternative method for the preliminary design of tunnels.

MSC:

74L10 Soil and rock mechanics
86-08 Computational methods for problems pertaining to geophysics
86A04 General questions in geophysics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Leca, E.; Clough, G. W., Preliminary design for NATM tunnel support in soil, J. Geotech. Eng., 118, 558-575 (1992)
[2] Oreste, P. P., Analysis of structural interaction in tunnels using the covergence-confinement approach, Tunnelling Underground Space Technol., 18, 347-363 (2003)
[3] Song, F.; Wang, H. N.; Jiang, M. J., Analytically-based simplified formulas for circular tunnels with two liners in viscoelastic rock under anisotropic initial stresses, Constr. Build. Mater., 175, 746-767 (2018)
[4] Song, F.; Rodriguez-Dono, A.; Olivella, S.; Zhong, Z., Analysis and modelling of longitudinal deformation profiles of tunnels excavated in strain-softening time-dependent rock masses, Comput. Geotech., 125, Article 103643 pp. (2020)
[5] Zhao, K.; Bonini, M.; Debernardi, D.; Janutolo, M.; Barla, G.; Chen, G., Computational modelling of the mechanised excavation of deep tunnels in weak rock, Comput. Geotech., 66, 158-171 (2015)
[6] Alejano, L. R.; Alonso, E.; Rodriguez-Dono, A.; Fernandez-Manin, G., Application of the convergence-confinement method to tunnels in rock masses exhibiting Hoek-Brown strain-softening behaviour, Int. J. Rock Mech. Min. Sci., 1, 150-160 (2010)
[7] Alejano, L. R.; Rodriguez-Dono, A.; Alonso, E.; Manín, G. F., Ground reaction curves for tunnels excavated in different quality rock masses showing several types of post-failure behaviour, Tunnelling Underground Space Technol., 24, 689-705 (2009)
[8] Alejano, L. R.; Rodríguez-Dono, A.; Veiga, M., Plastic radii and longitudinal deformation profiles of tunnels excavated in strain-softening rock masses, Tunnelling Underground Space Technol., 30, 169-182 (2012)
[9] E. Alonso, L. Alejano, G. Fdez-Manin, F. Garcia-Bastante, Influence of post-peak properties in the application of the convergence-confinement method for designing underground excavations, strain, 3 (2008) 1.
[10] Alonso, E.; Alejano, L. R.; Varas, F.; Fdez‐Manin, G.; Carranza‐Torres, C., Ground response curves for rock masses exhibiting strain‐softening behaviour, Int. J. Numer. Anal. Methods Geomech., 27, 1153-1185 (2003) · Zbl 1098.74039
[11] Carranza-Torres, C.; Fairhurst, C., The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek-Brown failure criterion, Int. J. Rock Mech. Min. Sci., 36, 777-809 (1999)
[12] Carranza-Torres, C.; Fairhurst, C., Application of the convergence-confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion, Tunnelling Underground Space Technol., 15, 187-213 (2000)
[13] Carranza-Torres, C.; Rysdahl, B.; Kasim, M., On the elastic analysis of a circular lined tunnel considering the delayed installation of the support, Int. J. Rock Mech. Min. Sci., 61, 57-85 (2013)
[14] Carranza-Torres, C.; Zhao, J., Analytical and numerical study of the effect of water pressure on the mechanical response of cylindrical lined tunnels in elastic and elasto-plastic porous media, Int. J. Rock Mech. Min. Sci., 46, 531-547 (2009)
[15] Chu, Z. F.; Wu, Z. J.; Liu, B. G.; Liu, Q. S., Coupled analytical solutions for deep-buried circular lined tunnels considering tunnel face advancement and soft rock rheology effects, Tunnelling Underground Space Technol., 94, Article 103111 pp. (2019)
[16] Cui, L.; Sheng, Q.; Dong, Y.-k.; Miao, C.-x.; Huang, J.-h.; Zhang, A., Two-stage analysis of interaction between strain-softening rock mass and liner for circular tunnels considering delayed installation of liner, Eu. J. Environ. Civil Eng., 1-26 (2020)
[17] Cui, L.; Sheng, Q.; Zheng, J. J.; Cui, Z.; Wang, A.; Shen, Q., Regression model for predicting tunnel strain in strain-softening rock mass for underground openings, Int. J. Rock Mech. Min. Sci., 119, 81-97 (2019)
[18] Cui, L.; Zheng, J. J.; Zhang, R. J.; Lai, H. J., A numerical procedure for the fictitious support pressure in the application of the convergence-confinement method for circular tunnel design, Int. J. Rock Mech. Min. Sci., 78, 336-349 (2015)
[19] Do, D. P.; Tran, N. T.; Mai, V. T.; Hoxha, D.; Vu, M. N., Time-dependent reliability analysis of deep tunnel in the viscoelastic burger rock with sequential installation of liners, Rock Mech. Rock Eng., 1-27 (2019)
[20] Fahimifar, A.; Ranjbarnia, M., Analytical approach for the design of active grouted rockbolts in tunnel stability based on convergence-confinement method, Tunnelling Underground Space Technol., 24, 363-375 (2009)
[21] Fahimifar, A.; Tehrani, F. M.; Hedayat, A.; Vakilzadeh, A., Analytical solution for the excavation of circular tunnels in a visco-elastic Burger’s material under hydrostatic stress field, Tunnelling Underground Space Technol., 25, 297-304 (2010)
[22] Kabwe, E.; Karakus, M.; Chanda, E. K., Proposed solution for the ground reaction of non-circular tunnels in an elastic-perfectly plastic rock mass, Comput. Geotech., 119, Article 103354 pp. (2020)
[23] Kabwe, E.; Karakus, M.; Chanda, E. K., Time-dependent solution for non-circular tunnels considering the elasto-viscoplastic rockmass, Int. J. Rock Mech. Min. Sci., 133, Article 104395 pp. (2020)
[24] Kargar, A. R., An analytical solution for circular tunnels excavated in rock masses exhibiting viscous elastic-plastic behavior, Int. J. Rock Mech. Min. Sci., 124, Article 104128 pp. (2019)
[25] Lu, A. Z.; Zhang, L. Q.; Zhang, N., Analytic stress solutions for a circular pressure tunnel at pressure and great depth including support delay, Int. J. Mech. Mining Sci. (1997), 48, 514-519 (2011)
[26] Maghous, S.; Bernaud, D.; Couto, E., Three-dimensional numerical simulation of rock deformation in bolt-supported tunnels: a homogenization approach, Tunnelling Underground Space Technol., 31, 68-79 (2012)
[27] Nomikos, P.; Rahmannejad, R.; Sofianos, A., Supported axisymmetric tunnels within linear viscoelastic Burgers rocks, Rock Mech. Rock Eng., 44, 553-564 (2011)
[28] Paraskevopoulou, C.; Diederichs, M., Analysis of time-dependent deformation in tunnels using the convergence-confinement method, Tunnelling Underground Space Technol., 71, 62-80 (2018)
[29] Prassetyo, S. H.; Gutierrez, M., Effect of transient coupled hydro-mechanical response on the longitudinal displacement profile of deep tunnels in saturated ground, Tunnelling Underground Space Technol., 75, 11-20 (2018)
[30] Prassetyo, S. H.; Gutierrez, M., Designing tunnel support systems based on ground reaction curve and equilibrium strain approach, ITA-AITES World Tunnel Congress, 2018 (2018)
[31] Song, F.; Wang, H. N.; Jiang, M. J., Analytical solutions for lined circular tunnels in viscoelastic rock considering various interface conditions, Appl. Math. Modell., 55, 109-130 (2018) · Zbl 1480.74222
[32] Wang, H. N.; Chen, X. P.; Jiang, M. J.; Song, F.; Wu, L., The analytical predictions on displacement and stress around shallow tunnels subjected to surcharge loadings, Tunnelling Underground Space Technol., 71, 403-427 (2018)
[33] Wang, H. N.; Gao, X.; Wu, L.; Jiang, M. J., Analytical study on interaction between existing and new tunnels parallel excavated in semi-infinite viscoelastic ground, Comput. Geotech., 120, Article 103385 pp. (2020)
[34] Wang, H. N.; Jiang, M. J.; Zhao, T.; Zeng, G. S., Viscoelastic solutions for stresses and displacements around non-circular tunnels sequentially excavated at great depths, Acta Geotech., 14, 111-139 (2019)
[35] Wang, H. N.; Li, Y.; Ni, Q.; Utili, S.; Jiang, M. J.; Liu, F., Analytical solutions for the construction of deeply buried circular tunnels with two liners in rheological rock, Rock Mech. Rock Eng., 46, 1481-1498 (2013)
[36] Wang, H. N.; Nie, G. H., Analytical expressions for stress and displacement fields in viscoelastic axisymmetric plane problem involving time-dependent boundary regions, Acta Mech., 210, 315-330 (2010) · Zbl 1397.74038
[37] Wang, H. N.; Song, F.; Zhao, T.; Jiang, M. J., Solutions for lined circular tunnels sequentially constructed in rheological rock subjected to nonhydrostatic initial stresses, Eu. J. Environ. Civil Eng. (2020)
[38] Wang, H. N.; Utili, S.; Jiang, M. J., An analytical approach for the sequential excavation of axisymmetric lined tunnels in viscoelastic rock, Int. J. Rock Mech. Min. Sci., 68, 85-106 (2014)
[39] Wang, H. N.; Utili, S.; Jiang, M. J.; He, P., Analytical solutions for tunnels of elliptical cross-section in rheological rock accounting for sequential excavation, Rock Mech. Rock Eng., 48, 1997-2029 (2015)
[40] Wang, H. N.; Wu, L.; Jiang, M. J., Viscoelastic ground responses around shallow tunnels considering surcharge loadings and effect of supporting, Eu. J. Environ. Civil Eng., 1-23 (2018)
[41] Wang, H. N.; Wu, L.; Jiang, M. J.; Song, F., Analytical stress and displacement due to twin tunneling in an elastic semi‐infinite ground subjected to surcharge loads, Int. J. Numer. Anal. Methods Geomech., 42, 809-828 (2018)
[42] Wang, H. N.; Zeng, G. S.; Jiang, M. J., Analytical stress and displacement around non-circular tunnels in semi-infinite ground, Appl. Math. Modell., 63, 303-328 (2018) · Zbl 1480.74006
[43] Wang, H. N.; Zeng, G. S.; Utili, S.; Jiang, M. J.; Wu, L., Analytical solutions of stresses and displacements for deeply buried twin tunnels in viscoelastic rock, Int. J. Rock Mech. Min. Sci., 93, 13-29 (2017)
[44] Wang, M. B.; Li, S. C., A complex variable solution for stress and displacement field around a lined circular tunnel at great depth, Int. J. Numer. Anal. Methods Geomech., 33, 939-951 (2009) · Zbl 1273.74314
[45] Wang, S. L.; Yin, X. T.; Tang, H.; Ge, X. R., A new approach for analyzing circular tunnel in strain-softening rock masses, Int. J. Rock Mech. Mining Sci. (1997), 47, 170-178 (2010)
[46] Zeng, G. S.; Wang, H. N.; Jiang, M. J., Analytical study of ground responses induced by the excavation of quasirectangular tunnels at shallow depths, Int. J. Numer. Anal. Methods Geomech., 43, 2200-2223 (2019)
[47] Zhang, K.; Zhang, G. M.; Hou, R. B.; Wu, Y.; Zhou, H. Q., Stress evolution in roadway rock bolts during mining in a fully mechanized longwall face, and an evaluation of rock bolt support design, Rock Mech. Rock Eng., 48, 333-344 (2015)
[48] Zhang, Q.; Jiang, B. S.; Lv, H. J., Analytical solution for a circular opening in a rock mass obeying a three-stage stress-strain curve, Int. J. Rock Mech. Min. Sci., 100, 16-22 (2016)
[49] Zhang, Q.; Jiang, B. S.; Wang, S. L.; Ge, X. R.; Zhang, H. Q., Elasto-plastic analysis of a circular opening in strain-softening rock mass, Int. J. Rock Mech. Min. Sci., 50, 38-46 (2012)
[50] Zhang, Q.; Wang, H. Y.; Jiang, Y. J.; Lu, M. M.; Jiang, B. S., A numerical large strain solution for circular tunnels excavated in strain-softening rock masses, Comput. Geotech., 114, Article 103142 pp. (2019)
[51] Zou, J. F.; Li, C.; Wang, F., A new procedure for ground response curve (GRC) in strain-softening surrounding rock, Comput. Geotech., 89, 81-91 (2017)
[52] Li, S. C.; Wang, M. B., An elastic stress-displacement solution for a lined tunnel at great depth, Int. J. Rock Mech. Min. Sci., 45, 486-494 (2008)
[53] Shen, Q.; Zheng, J. J.; Cui, L.; Pan, Y.; Cui, B., A procedure for interaction between rock mass and liner for deep circular tunnel based on new solution of longitudinal displacement profile,, Eu. J. Environ. Civil Eng. (2019)
[54] Vrakas, A.; Anagnostou, G., A finite strain closed‐form solution for the elastoplastic ground response curve in tunnelling, Int. J. Numer. Anal. Methods Geomech., 38, 1131-1148 (2014)
[55] Yu, H. S., Expansion of a thick cylinder of soils, Comput. Geotech., 14, 21-41 (1992)
[56] Carranza-Torres, C., Self-Similarity Analysis of the Elasto-Plastic Response of Underground Openings in Rock and Effects of Practical Variables (1998), University of Minnesota
[57] Brown, E. T.; Bray, J. W.; Ladanyi, B.; Hoek, E., Ground response curves for rock tunnels, J. Geotech. Eng., 109, 15-39 (1983)
[58] Lee, Y.-K.; Pietruszczak, S., A new numerical procedure for elasto-plastic analysis of a circular opening excavated in a strain-softening rock mass, Tunnelling Underground Space Technol., 23, 588-599 (2008)
[59] Park, K.-H.; Tontavanich, B.; Lee, J.-G., A simple procedure for ground response curve of circular tunnel in elastic-strain softening rock masses, Tunnelling Underground Space Technol., 23, 151-159 (2008)
[60] Wang, S. L.; Yin, S. D.; Wu, Z. J., Strain‐softening analysis of a spherical cavity, Int. J. Numer. Anal. Methods Geomech., 36, 182-202 (2012)
[61] Wang, S. L.; Yin, X. T.; Tang, H.; Ge, X. R., A new approach for analyzing circular tunnel in strain-softening rock masses, Int. J. Rock Mech. Min. Sci., 1, 170-178 (2010)
[62] Zhang, Q.; Zhang, C. H.; Jiang, B. S.; Li, N.; Wang, Y. C., Elastoplastic coupling solution of circular openings in strain-softening rock mass considering pressure-dependent effect, Int. J. Geomech., 18, Article 04017132 pp. (2017)
[63] Oreste, P., Analysis of the interaction between the lining of a TBM tunnel and the ground using the convergence-confinement method, Am. J. Appl. Sci., 12, 276 (2015)
[64] Sulem, J.; Panet, M.; Guenot, A., An analytical solution for time-dependent displacements in a circular tunnel, Int. J. Rock Mech. Mining Sci. Geomech. Abstracts, Elsevier, 155-164 (1987)
[65] Hoek, E.; Brown, E. T., Practical estimates of rock mass strength, Int. J. Rock Mech. Min. Sci., 34, 1165-1186 (1997)
[66] Hoek, E.; Carranza-Torres, C.; Corkum, B., Hoek-Brown failure criterion-2002 edition, Proceedings of NARMS-Tac, 1, 267-273 (2002)
[67] Vlachopoulos, N.; Diederichs, M. S., Improved longitudinal displacement profiles for convergence confinement analysis of deep tunnels, Rock Mech. Rock Eng., 42, 131-146 (2009)
[68] FLAC3D Version 3. Fast Lagrangian Analysis of Continua, 3D Version, Minneapolis, Minnesota, USA (2007)
[69] FLAC Version 7. Fast Lagrangian Analysis of Continua. 2D Version, Minneapolis, Minnesota, USA (2011)
[70] Rodriguez-Dono, A., Studies on Undergrond Excavations in Rock Masses (2011), Universidade de Vigo
[71] Atkinson, K. E., An Introduction to Numerical Analysis (2008), John wiley & sons
[72] Sastry, S. S., Introductory Methods of Numerical Analysis (2012), PHI Learning Pvt, Ltd.: PHI Learning Pvt, Ltd. New Delhi, India
[73] Bonini, M.; Debernardi, D.; Barla, M.; Barla, G., The mechanical behaviour of clay shales and implications on the design of tunnels, Rock Mech. Rock Eng., 42, 361 (2009)
[74] Zhang, J. Z.; Zhou, X. P.; Yin, P., Visco-plastic deformation analysis of rock tunnels based on fractional derivatives, Tunnelling Underground Space Technol., 85, 209-219 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.