Investigation on springback behaviours of hexagonal close-packed sheet metals. (English) Zbl 1481.74231

Summary: In this study, a novel analytical method for predicting bending and springback behaviours of hexagonal close-packed (HCP) sheet metals is presented. The proposed analytical approach is developed by using the Cazacu-Barlat 2004 asymmetric yield function and isotropic plastic hardening rule. This model can be used to determine bending moment-curvature relationships and springback of HCP metals under uniaxial and plane strain loading conditions. Furthermore, to capture the nonlinearity in unloading and to improve springback prediction, the variable elastic modulus approach is implemented in the proposed model. The proposed new model reveals that reverse effects of the back force on springback behaviours cannot be found under the plane strain condition, which could not be found by using any existing models. Moreover, the analytical model is implemented into Abaqus via UMAT subroutine for its application in complex cases, and a numerical model is then developed as a showcase. The proposed methods are validated by using those experimental results available in literature. The results show considerable improvements by considering the plane strain condition and nonlinear unloading.


74H10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of dynamical problems in solid mechanics
Full Text: DOI


[1] Abu‐farha, F. K.; Khraisheh, M. K., Analysis of superplastic deformation of AZ31 magnesium alloy, Adv. Eng. Mater., 9, 777-783 (2007)
[2] Badr, O. M.; Rolfe, B.; Zhang, P.; Weiss, M., Applying a new constitutive model to analyse the springback behaviour of titanium in bending and roll forming, Int. J. Mech. Sci., 128, 389-400 (2017)
[3] Ball, E.; Prangnell, P., Tensile-compressive yield asymmetries in high strength wrought magnesium alloys, Scr. Metall. Mater.;(United States), 31 (1994)
[4] Carden, W.; Geng, L.; Matlock, D.; Wagoner, R., Measurement of springback, Inter. J. Mech. Sci., 44, 79-101 (2002) · Zbl 0986.74503
[5] Cazacu, O.; Barlat, F., A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals, Int. J. Plast., 20, 2027-2045 (2004) · Zbl 1107.74006
[6] Cazacu, O.; Plunkett, B.; Barlat, F., Orthotropic yield criterion for hexagonal closed packed metals, Int. J. Plast., 22, 1171-1194 (2006) · Zbl 1090.74015
[7] Cubberly, W. H.; Baker, H.; Benjamin, D.; Unterweiser, P. M.; Kirkpatrick, C. W.; Knoll, V.; Nieman, K., Metals handbook, Properties and Selection: Nonferrous Alloys and Pure Metals, 801 (1979), American Society for Metals: American Society for Metals Metals Park, Ohio
[8] Drucker, D. C., Relation of experiments to mathematical theories of plasticity, J. Appl. Mech.-Trans. ASME, 16, 349-357 (1949) · Zbl 0036.39903
[9] Fereshteh-saniee, F.; Fakhar, N.; Karami, F.; Mahmudi, R., Superior ductility and strength enhancement of ZK60 magnesium sheets processed by a combination of repeated upsetting and forward extrusion, Mater. Sci. Eng.: A, 673, 450-457 (2016)
[10] Gall, S.; Coelho, R.; Müller, S.; Reimers, W., Mechanical properties and forming behavior of extruded AZ31 and ME21 magnesium alloy sheets, Mater. Sci. Eng.: A, 579, 180-187 (2013)
[11] Gradinger, R.; Stolfig, P., Magnesium wrought alloys for automotive applications, Proc. Min., Met. Mater. Soc. (TMS), 231-236 (2003)
[12] Hadadzadeh, A.; Wells, M. A.; Shaha, S. K.; Jahed, H.; Williams, B. W., Role of compression direction on recrystallization behavior and texture evolution during hot deformation of extruded ZK60 magnesium alloy, J. Alloys Compd., 702, 274-289 (2017)
[13] Härtel, S.; Graf, M.; Lehmann, T.; Ullmann, M., Influence of tension-compression anomaly during bending of magnesium alloy AZ31, Mater. Sci. Eng.: A, 705, 62-71 (2017)
[14] Hosford, W., Texture strengthening, Met. Eng. Quart., 6, 13-19 (1966)
[15] Hosford, W., A generalized isotropic yield criterion, J. Appl. Mech., 39, 607-609 (1972)
[16] Khan, A. S.; Pandey, A.; Gnäupel-herold, T.; Mishra, R. K., Mechanical response and texture evolution of AZ31 alloy at large strains for different strain rates and temperatures, Int. J. Plast., 27, 688-706 (2011) · Zbl 1426.74013
[17] Kim, H.; Kim, C.; Barlat, F.; Pavlina, E.; Lee, M.-. G., Nonlinear elastic behaviors of low and high strength steels in unloading and reloading, Mater. Sci. Eng.: A, 562, 161-171 (2013)
[18] Kim, J. H.; Lee, M.-. G.; Kim, S.-. J.; Chung, K.; Wagoner, R. H., Reverse effect of tensile force on sidewall curl for materials with tensile/compressive strength difference, Met. Mater. Int., 15, 353 (2009)
[19] Klimanek, P.; Pötzsch, A., Microstructure evolution under compressive plastic deformation of magnesium at different temperatures and strain rates, Mater. Sci. Eng.: A, 324, 145-150 (2002)
[20] Knezevic, M.; Levinson, A.; Harris, R.; Mishra, R. K.; Doherty, R. D.; Kalidindi, S. R., Deformation twinning in AZ31: influence on strain hardening and texture evolution, Acta Mater., 58, 6230-6242 (2010)
[21] Kulekci, M. K., Magnesium and its alloys applications in automotive industry, Int. J. Adv. Manuf. Technol., 39, 851-865 (2008)
[22] Kuwabara, T.; Kumano, Y.; Ziegelheim, J.; Kurosaki, I., Tension-compression asymmetry of phosphor bronze for electronic parts and its effect on bending behavior, Int. J. Plast., 25, 1759-1776 (2009)
[23] Lee, J.-. Y.; Lee, M.-. G.; Barlat, F.; Bae, G., Piecewise linear approximation of nonlinear unloading-reloading behaviors using a multi-surface approach, Int. J. Plast., 93, 112-136 (2017)
[24] Lee, J.; Kim, S.-. J.; Lee, Y.-. S.; Lee, J.-. Y.; Kim, D.; Lee, M.-. G., Distortional hardening concept for modeling anisotropic/asymmetric plastic behavior of AZ31B magnesium alloy sheets, Int. J. Plast., 94, 74-97 (2017)
[25] Lee, M.-. G.; Kim, D.; Kim, C.; Wenner, M.; Wagoner, R.; Chung, K., A practical two-surface plasticity model and its application to spring-back prediction, Int. J. Plast., 23, 1189-1212 (2007) · Zbl 1294.74018
[26] Lee, M.-. G.; Wagoner, R.; Lee, J.; Chung, K.; Kim, H., Constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloy sheets, Int. J. Plast., 24, 545-582 (2008) · Zbl 1214.74004
[27] Lee, M.; Kim, J.; Chung, K.; Kim, S.; Wagoner, R.; Kim, H., Analytical springback model for lightweight hexagonal close-packed sheet metal, Int. J. Plast., 25, 399-419 (2009) · Zbl 1277.74006
[28] Lee, M.; Kim, S.; Wagoner, R.; Chung, K.; Kim, H., Constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloy sheets: application to sheet springback, Int. J. Plast., 25, 70-104 (2009) · Zbl 1277.74014
[29] Lou, X.; Li, M.; Boger, R.; Agnew, S.; Wagoner, R., Hardening evolution of AZ31B Mg sheet, Int. J. Plast., 23, 44-86 (2007) · Zbl 1331.74007
[30] Maeda, T.; Noma, N.; Kuwabara, T.; Barlat, F.; Korkolis, Y. P., Measurement of the strength differential effect of DP980 steel sheet and experimental validation using pure bending test, J. Mater. Process. Technol., 256, 247-253 (2018)
[31] MEHRABI, H.; YANG, C., A theoretical study on pure bending of hexagonal close-packed metal sheet, (AIP Conference Proceedings (2018), AIP Publishing LLC), Article 170012 pp.
[32] Mehrabi, H.; Yang, R. C.; Wang, B., Effects of tension-compression asymmetry on bending of steels, Appl. Sci., 10, 9 (2020), Article No. 3339
[33] Mekonen, M. N.; Steglich, D.; Bohlen, J.; Letzig, D.; Mosler, J., Mechanical characterization and constitutive modeling of Mg alloy sheets, Mater. Sci. Eng.: A, 540, 174-186 (2012)
[34] Muhammad, W.; Mohammadi, M.; Kang, J.; Mishra, R. K.; Inal, K., An elasto-plastic constitutive model for evolving asymmetric/anisotropic hardening behavior of AZ31B and ZEK100 magnesium alloy sheets considering monotonic and reverse loading paths, Int. J. Plast., 70, 30-59 (2015)
[35] Nguyen, N.-. T.; Seo, O. S.; Lee, C. A.; Lee, M.-. G.; KIM, J.-. H.; Kim, H. Y., Mechanical behavior of AZ31B Mg alloy sheets under monotonic and cyclic loadings at room and moderately elevated temperatures, Materials (Basel), 7, 1271-1295 (2014)
[36] Ortiz, M.; Pinsky, P., Global Analysis Methods for the Solution of Elastoplastic and Viscoplastic Dynamic Problems (1981), Dept. Civil Eng. University of California: Dept. Civil Eng. University of California Berkley, EUA
[37] Park, N.; Stoughton, T. B.; Yoon, J. W., A criterion for general description of anisotropic hardening considering strength differential effect with non-associated flow rule, Int. J. Plast., 121, 76-100 (2019)
[38] Pavlina, E. J.; Lee, M.-. G.; Barlat, F., Observations on the nonlinear unloading behavior of advanced high strength steels, Metall. Mater. Trans. A, 46, 18-22 (2015)
[39] Sarker, D.; Friedman, J.; Chen, D., Twin growth and texture evolution in an extruded AM30 magnesium alloy during compression, J. Mater. Sci. Technol., 30, 884-887 (2014)
[40] Song, J.; Pan, F.; Jiang, B.; Atrens, A.; Zhang, M.-. X.; Lu, Y., A review on hot tearing of magnesium alloys, J. Magn. Alloys, 4, 151-172 (2016)
[41] Song, L.; Wu, B.; Zhang, L.; Du, X.; Wang, Y.; Esling, C., Twinning characterization of fiber-textured AZ31B magnesium alloy during tensile deformation, Mater. Sci. Eng.: A, 710, 57-65 (2018)
[42] Styczynski, A.; Hartig, C.; Bohlen, J.; Letzig, D., Cold rolling textures in AZ31 wrought magnesium alloy, Scr. Mater., 50, 943-947 (2004)
[43] Sun, L.; Wagoner, R., Complex unloading behavior: nature of the deformation and its consistent constitutive representation, Int. J. Plast., 27, 1126-1144 (2011) · Zbl 1426.74071
[44] Tadano, Y., Formability of magnesium sheet with rolling texture, Int. J. Mech. Sci.s, 108, 72-82 (2016)
[45] Tari, D. G.; Worswick, M.; Ali, U.; Gharghouri, M., Mechanical response of AZ31B magnesium alloy: experimental characterization and material modeling considering proportional loading at room temperature, Int. J. Plast., 55, 247-267 (2014)
[46] Watanabe, H.; Takara, A.; Somekawa, H.; Mukai, T.; Higashi, K., Effect of texture on tensile properties at elevated temperatures in an AZ31 magnesium alloy, Scr. Mater., 52, 449-454 (2005)
[47] Wu, P.; Guo, X.; Qiao, H.; Lloyd, D., A constitutive model of twin nucleation, propagation and growth in magnesium crystals, Mater. Sci. Eng.: A, 625, 140-145 (2015)
[48] Yoo, M., Slip, twinning, and fracture in hexagonal close-packed metals, Metall. Trans. A, 12, 409-418 (1981)
[49] Yoon, J. W.; Lou, Y.; Yoon, J.; Glazoff, M. V., Asymmetric yield function based on the stress invariants for pressure sensitive metals, Int. J. Plast., 56, 184-202 (2014)
[50] Yoshida, F.; Hamasaki, H.; Uemori, T., Modeling of anisotropic hardening of sheet metals including description of the Bauschinger effect, Int. J. Plast., 75, 170-188 (2015)
[51] Yoshida, F.; Uemori, T.; Fujiwara, K., Elastic-plastic behavior of steel sheets under in-plane cyclic tension-compression at large strain, Int. J. Plast., 18, 633-659 (2002) · Zbl 0995.74502
[52] Yukutake, E.; Kaneko, J.; Sugamata, M., Anisotropy and non-uniformity in plastic behavior of AZ31 magnesium alloy plates, Mater. Trans., 44, 452-457 (2003)
[53] Zhou, G.; Jain, M. K.; Wu, P.; Shao, Y.; Li, D.; Peng, Y., Experiment and crystal plasticity analysis on plastic deformation of AZ31B Mg alloy sheet under intermediate temperatures: how deformation mechanisms evolve, Int. J. Plast., 79, 19-47 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.