×

Strong free-surface turbulence in breaking bores: a physical study on the free-surface dynamics and air-water interfacial features. (English) Zbl 1501.76015

Summary: Highly turbulent free-surface flows are characterised by complex and rapidly varying air-water surface features, leading to enhanced surface roughness, breakup and disintegration processes. Such a strong free-surface turbulence has an impact on a number of environmental flows, and a deeper understanding of its physical nature is fundamental. Unsteady breaking bores are of particular interest because of their recirculating motion, with large air entrainment and splashes, resulting in highly fluctuating and rapidly varying free-surface flows. Herein, new methodologies and innovative approaches are used in support of a deeper understanding of the physical processes within a breaking roller, inclusive of a comprehensive assessment of its free-surface dynamics. Because of the unsteadiness of the flow, multiple repetitions were necessary and all results were based upon an ensemble statistical analysis. Ultra-high-speed videos recorded from both top and side views allowed for a detailed characterisation of the roller’s free surface, providing a description and classification of the most recurring air-water surface features. A quantification of their main properties in terms of geometry, duration and frequency of appearance revealed an evolution of these features during their lifespans. In parallel, the use of optical flow techniques provided a characterisation of the surface velocity fields, yielding information on the free-surface kinematic properties and revealing a strong link between air-water surface features, energy dissipation and time/length scales.

MSC:

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76T10 Liquid-gas two-phase flows, bubbly flows
76F55 Statistical turbulence modeling
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adelson, E. & Anderson, C.1984Pyramid methods in image processing. RCA Eng.29 (6), 33-41.
[2] Anderson, C.H., Burt, P.J. & Van Der Wal, G.S.1985Change detection and tracking using pyramid transform techniques. P. Soc. Photo-Opt. Ins.579, 72-78.
[3] Banner, M.L. & Peregrine, D.H.1993Wave breaking in deep water. Annu. Rev. Fluid Mech.25 (1), 373-397.
[4] Brennen, C.1970Cavity surface wave patterns and general appearance. J. Fluid Mech.44 (1), 33-49.
[5] Bressan, L., Guerrero, M., Antonini, A., Petruzzelli, V., Archetti, R., Lamberti, A. & Tinti, S.2018A laboratory experiment on the incipient motion of boulders by high-energy coastal flows. Earth Surf. Process. Landf.43 (14), 2935-2947.
[6] Brocchini, M.2002Free surface boundary conditions at a bubbly/weakly splashing air-water interface. Phys. Fluids14 (6), 1834-1840. · Zbl 1185.76066
[7] Brocchini, M. & Peregrine, D.H.2001aThe dynamics of strong turbulence at free surfaces. Part 1. Description. J. Fluid Mech.449, 225-254. · Zbl 1007.76027
[8] Brocchini, M. & Peregrine, D.H.2001bThe dynamics of strong turbulence at free surfaces. Part 2. Free-surface boundary conditions. J. Fluid Mech.449, 255-290. · Zbl 1007.76027
[9] Bung, D.B. & Valero, D.2016Optical flow estimation in aerated flows. J. Hydraul Res.54 (5), 575-580.
[10] Chachereau, Y. & Chanson, H.2011Free-surface fluctuations and turbulence in hydraulic jumps. Expl Therm. Fluid Sci.35, 896-909.
[11] Chan, W.H.R., Johnson, P. & Moin, P.2020a The turbulent bubble break-up cascade. Part 2. Numerical simulations of breaking waves. arXiv:2008.04804.
[12] Chan, W.H.R., Johnson, P., Moin, P. & Urzay, J.2020b The turbulent bubble break-up cascade. Part 1. Theoretical developments. arXiv:2008.12883. · Zbl 1461.76454
[13] Chanson, H.1997Air Bubble Entrainment in Free-Surface Turbulent Shear Flows. Academic Press.
[14] Chanson, H.2007Bubbly flow structure in hydraulic jump. Eur. J. Mech. B Fluids26, 367-384. · Zbl 1151.76316
[15] Chanson, H.2011aTidal Bores, Aegir, Eagre, Mascaret, Pororoca: Theory and Observations. World Scientific.
[16] Chanson, H.2011bHydraulic jumps: turbulence and air bubble entrainment. Houille Blanche1, 5-16.
[17] Chanson, H. & Brattberg, T.2000Experimental study of the air-water shear flow in a hydraulic jump. Intl J. Multiphase Flow26 (4), 583-607. · Zbl 1137.76546
[18] Deane, G. & Stokes, M.2002Scale dependence of bubble creation mechanisms in breaking waves. Nature418, 839-844.
[19] Deike, L., Melville, W.K. & Popinet, S.2016Air entrainment and bubble statistics in breaking waves. J. Fluid Mech.801, 91-129. · Zbl 1462.76040
[20] Doron, P., Bertuccioli, L., Kats, J. & Osborn, T.R.2001Turbulence characteristics and dissipation estimates in the coastal ocean bottom boundary layer from PIV data. J. Phys. Oceanogr.31, 2108-2134.
[21] Duncan, J.H., Qiao, H., Philomin, V. & Wenz, A.1999Gentle spilling breakers: crest profile evolution. J. Fluid Mech.379, 191-222. · Zbl 0938.76505
[22] Eitel-Amor, G., Örlü, R., Schlatter, P. & Flores, O.2015Hairpin vortices in turbulent boundary layers. Phys. Fluids27 (2), 025108.
[23] Ervine, D.A. & Falvey, H.T.1987Behaviour of turbulent water jets in the atmosphere and in plunge pools. Proc. Inst. Civ. Engrs83 (2), 295-314.
[24] Farneback, G.2002 Polynomial expansion for orientation and motion estimation. PhD thesis (No. 790), Linköping University, Sweden. · Zbl 1040.68627
[25] Farneback, G.2003 Two-frame motion estimation based on polynomial expansion. In Lecture Notes in Computer Science Image Analysis. SCIA 2003 (ed. J. Bigun & T. Gustavsson), vol. 2749, pp. 363-370. Springer. · Zbl 1040.68627
[26] Fulgosi, M., Lakehal, D., Banerjee, S. & De Angelis, V.2003Direct numerical simulation of turbulence in a sheared air-water flow with a deformable interface. J. Fluid Mech.482, 319-345. · Zbl 1119.76343
[27] Guo, X. & Shen, L.2010Interaction of a deformable free surface with statistically steady homogeneous turbulence. J. Fluid Mech.658, 33-62. · Zbl 1205.76125
[28] Henderson, F.M.1966Open Channel Flow. Macmillan.
[29] Hino, M.1961 On the mechanism of self-aerated flows on stepped slope channels. Applications of the statistical theory of turbulence. In Proceedings of the 9th IAHR Congress, 4-7 September, Dubrovnick, Yugoslavia, pp. 123-132.
[30] Hinze, J.1955Fundamentals of the hydraulic mechanism of splitting in dispersion processes. AIChE J. 1 (3), 289-295.
[31] Hong, W.L. & Walker, D.T.2000Reynolds-averaged equations for free-surface flows with application to high-Froude-number jet spreading. J. Fluid Mech.417, 183-209. · Zbl 0983.76030
[32] Hornung, H.G., Willert, C. & Turner, S.1977The flow field downstream of a hydraulic jump. J. Fluid Mech.287, 299-316. · Zbl 0850.76105
[33] Hoyt, J.W. & Taylor, J.J.1977Waves on water jets. J. Fluid Mech.83 (1), 119-127.
[34] Huang, Z.C., Hsiao, S.C., Hwung, H.H. & Chang, K.A.2009Turbulence and energy dissipations of surf-zone spilling breakers. Coast. Engng56 (7), 733-746.
[35] Hunt, J.C.R. & Graham, J.M.R.1978Free-stream turbulence near plane boundaries. J. Fluid Mech.84 (2), 209-235. · Zbl 0365.76056
[36] Hunt, J.C.R., Stretch, D.D. & Belcher, S.E.2011Viscous coupling of shear-free turbulence across nearly flat fluid interfaces. J. Fluid Mech.671, 96-120. · Zbl 1225.76150
[37] Jackson, R.G.1976Sedimentological and fluid-dynamic implications of the turbulent bursting phenomenon in geophysical flows. J. Fluid Mech.77 (3), 531-560. · Zbl 0336.76018
[38] Kiger, K.T. & Duncan, J.H.2012Air-entrainment mechanisms in plunging jets and breaking waves. Annu. Rev. Fluid Mech.44, 563-596. · Zbl 1352.76026
[39] Kimmoun, O. & Branger, H.2007A particle image velocimetry investigation on laboratory surf-zone breaking waves over a sloping beach. J. Fluid Mech.588, 353-397. · Zbl 1141.76313
[40] Korchokha, M.1968Investigation of the dune movement of sediments on the Polomet River. Sov. Hydrol.541-559.
[41] Kramer, M. & Chanson, H.2019Optical flow estimations in aerated spillway flows: filtering and discussion on sampling parameters. Expl Therm. Fluid Sci.103, 318-328.
[42] Leng, X. & Chanson, H.2015Turbulent advances of a breaking bore: preliminary physical experiments. Expl. Therm. Fluid Sci.62 (1), 70-77.
[43] Leng, X. & Chanson, H.2017Unsteady turbulence, dynamic similarity and scale effects in bores and positive surges. Eur. J. Mech. B/Fluids61 (1), 125-134. · Zbl 1408.76046
[44] Leng, X. & Chanson, H.2019aTwo-phase flow measurements of an unsteady breaking bore. Exp. Fluids60 (3), 42.
[45] Leng, X. & Chanson, H.2019bFlow air-water interaction and characteristics in breaking bores. Intl J. Multiphase Flow120, 103101.
[46] Lin, J.C. & Rockwell, D.1995Evolution of a quasi-steady breaking wave. J. Fluid Mech.302, 29-44.
[47] Lubin, P. & Glockner, S.2015Numerical simulations of three-dimensional plunging breaking waves: generation and evolution of aerated vortex filaments. J. Fluid Mech.767, 364-393.
[48] Lubin, P., Kimmoun, O., Veron, F. & Glockner, S.2019Discussion on instabilities in breaking waves: vortices, air-entrainment and droplet generation. Eur. J. Mech. B/Fluids73, 144-156.
[49] Magnaudet, J.2003High-Reynolds-number turbulence in a shear-free boundary layer: revisiting the Hunt-Graham theory. J. Fluid Mech.484, 167-196. · Zbl 1077.76029
[50] Mortazavi, M., Le Chenadec, V., Moin, P. & Mani, A.2016Direct numerical simulation of a turbulent hydraulic jump: turbulence statistics and air entrainment. J. Fluid Mech.797, 60-94. · Zbl 1422.76182
[51] Mouaze, D., Murzyn, F. & Chaplin, J.R.2005Free surface length scale estimation in hydraulic jumps. J. Fluids Engng127 (6), 1191-1193. · Zbl 1135.76503
[52] Murzyn, F. & Chanson, H.2009Free-surface fluctuations in hydraulic jumps: experimental observations. Expl Therm. Fluid Sci.33 (7), 1055-1064.
[53] Murzyn, F., Mouaze, D. & Chaplin, J.R.2007Air-water interface dynamic and free surface features in hydraulic jumps. J. Hydraul Res45 (5), 679-685. · Zbl 1135.76503
[54] Nezu, I. & Nakagawa, H.1993Turbulence in Open-Channel Flows. Balkema. · Zbl 0358.76042
[55] Nikora, V., Habersack, H., Huber, T. & Mcewan, I.2002On bed particle diffusion in gravel bed flows under weak bed load transport. Water Resour. Res.38 (6), 17.1-9.
[56] Notz, P.K. & Basaran, O.A.2004Dynamics and breakup of a contracting liquid filament. J. Fluid Mech.512, 223-256. · Zbl 1163.76356
[57] Peregrine, D.H.1981The fascination of fluid mechanics. J. Fluid Mech.106, 59-80. · Zbl 0473.76035
[58] Savelsberg, R. & Van De Water, W.2008Turbulence of a free surface. Phys. Rev. Lett.100 (3), 3-6.
[59] Savelsberg, R. & Van De Water, W.2009Experiments on free-surface turbulence. J. Fluid Mech.619, 95-125. · Zbl 1156.76334
[60] Seol, D.G. & Jirka, G.H.2010Quasi-two-dimensional properties of a single shallow-water vortex with high initial Reynolds numbers. J. Fluid Mech.665, 274-299. · Zbl 1225.76027
[61] Shen, L. & Yue, D.K.2001Large-eddy simulation of free-surface turbulence. J. Fluid Mech.440, 75-116. · Zbl 1049.76034
[62] Shi, R., Leng, X. & Chanson, H.2020On optical flow and image processing technique applied to breaking surges. Flow Meas. Instrum.72, 101710.
[63] Smolentsev, S. & Mirachaie, R.2005Study of a free surface in open-channel water flows in the regime from ‘weak’ to ‘strong’ turbulence. Intl J. Multiphase Flow31 (8), 921-939. · Zbl 1135.76551
[64] Soligo, G., Roccon, A. & Soldati, A.2019Breakage, coalescence and size distribution of surfactant-laden droplets in turbulent flow. J. Fluid Mech.881, 244-282. · Zbl 1430.76250
[65] Stive, M.J.1984Energy dissipation in waves breaking on gentle slopes. Coast. Engng8 (2), 99-127.
[66] Svendsen, I.A.1987Analysis of surf zone turbulence. J. Geophys. Res.92, 5155-5124.
[67] Teixeira, M.A.C. & Belcher, S.E.2002On the distortion of turbulence by a progressive surface wave. J. Fluid Mech.458, 229-267. · Zbl 1112.76377
[68] Treske, A.1994Undular bores (favre-waves) in open channels - experimental studies. J. Hydraul Res.32 (3), 355-370.
[69] Wang, H.2014 Turbulence and air entrainment in hydraulic jumps. PhD Thesis. School of Civil Engineering, The University of Queensland.
[70] Wang, H. & Chanson, H.2016Self-similarity and scale effects in physical modelling of hydraulic jump roller dynamics, air entrainment and turbulent scales. Environ. Fluid Mech.16 (6), 1087-1110.
[71] Wang, H., Leng, X. & Chanson, H.2017Bores and hydraulic jumps. Environmental and geophysical applications. Proc. Inst. Civ. Engrs170 (EM1), 25-42.
[72] Wang, Z., Yang, J. & Stern, F.2016High-fidelity simulations of bubble, droplet and spray formation in breaking waves. J. Fluid Mech.792, 307-327. · Zbl 1381.76365
[73] Wood, I.1991Air Entrainment in Free-Surface Flow - IAHR Hydraulic Structures Design Manual No. 4. Balkema.
[74] Wu, X. & Moin, P.2009Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. J. Fluid Mech.630, 5-41. · Zbl 1181.76084
[75] Wüthrich, D., Nistor, I., Pfister, M. & Schleiss, A.2018Experimental study of tsunami-like waves generated with a vertical release technique on dry and wet beds. J. Waterways Port Coast. Ocean Engng144 (4), 04018006.
[76] Wüthrich, D., Shi, R. & Chanson, H.2020aPhysical study of the 3-dimensional characteristics and free-surface properties of a breaking roller in bores and surges. Expl Therm. Fluid Sci.112, 109980.
[77] Wüthrich, D., Shi, R. & Chanson, H.2020b Air-water characteristics of a breaking bore roller. Part I: two-phase surface features and strong turbulence. Hydraulic Model Report No. CH117/20. School of Civil Engineering, The University of Queensland, Brisbane, Australia, 158 pages.
[78] Yamamoto, Y. & Kunugi, T.2011Direct numerical simulation of a high-Froude-number turbulent open-channel flow. Phys. Fluids23 (12), 125108.
[79] Yu, X., Hendrickson, K., Campbell, B.K. & Yue, D.K.P.2019Numerical investigation of shear-flow free-surface turbulence and air entrainment at large Froude and Weber numbers. J. Fluid Mech.880, 209-238. · Zbl 1430.76235
[80] Zhang, G. & Chanson, H.2018Application of local optical flow methods to high-velocity free-surface flows: validation and application to stepped chutes. Expl Therm. Fluid Sci.90, 186-199.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.