Staggered explicit-implicit time-discretization for elastodynamics with dissipative internal variables. (English) Zbl 1481.65189

Summary: An extension of the two-step staggered time discretization of linear elastodynamics in stress-velocity form to systems involving internal variables subjected to a possibly non-linear dissipative evolution is proposed. The original scheme is thus enhanced by another step for the internal variables which, in general, is implicit, although even this step might be explicit if no spatial gradients of the internal variables are involved. Using an abstract Banach-space formulation, a priori estimates and convergence are proved under a CFL condition. The developed three-step scheme finds applications in various problems of continuum mechanics at small strain. Here, we consider in particular plasticity, viscoelasticity (creep), diffusion in poroelastic media, and damage.


65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65P10 Numerical methods for Hamiltonian systems including symplectic integrators
65Z05 Applications to the sciences
74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74H15 Numerical approximation of solutions of dynamical problems in solid mechanics
74R20 Anelastic fracture and damage
74S05 Finite element methods applied to problems in solid mechanics
76S05 Flows in porous media; filtration; seepage
76A10 Viscoelastic fluids
26A33 Fractional derivatives and integrals
Full Text: DOI arXiv


[1] Y.N. Abousleiman, A.H.-D. Cheng and F.-J. Ulm, editors, Poromechanics III: Biot Centennial (1905-2005). Taylor & Francis, London (2005).
[2] L. Ambrosio and V.M. Tortorelli, Approximation of functional depending on jumps via by elliptic functionals via Г-convergence. Comm. Pure Appl. Math. 43 (1990) 999-1036. · Zbl 0722.49020
[3] M. Arndt, M. Griebel and T. Roubček, Modelling and numerical simulation of martensitic transformation in shape memory alloys. Continuum Mech. Thermodyn. 15 (2003) 463-485. · Zbl 1068.74588
[4] D.N. Arnold and G. Awanou, Rectangular mixed finite elements for elasticity. Math. Models Methods Appl. Sci. 15 (2005) 1417-1429. · Zbl 1077.74044
[5] D.N. Arnold and R. Winther, Mixed finite elements for elasticity. Numer. Math. 92 (2002) 401-419. · Zbl 1090.74051
[6] D.N. Arnold, G. Awanou and R. Winther, Finite elements for symmetric tensors in three dimensions. Math. Comput. 77 (2008) 1229-1251. · Zbl 1285.74013
[7] E. Bécache, P. Joly and C. Tsogka, Fictitious domains, mixed finite elements and perfectly matched layers for 2D elastic wave propagation. J. of Comput. Acoustics 9 (2001) 1175-1202. · Zbl 1360.74156
[8] E. Bécache, P. Joly and C. Tsogka, A new family of mixed finite elements for the linear elastodynamic problem. SIAM J. Numer. Anal. 39 (2002) 2109-2132. · Zbl 1032.74049
[9] E. Bécache, A. Ezziani and P. Joly, A mixed finite element approach for viscoelastic wave propagation. Comput. Geosci. 8 (2004) 255-299. · Zbl 1065.74069
[10] E. Bécache, G. Derveaux and P. Joly, An efficient numerical method for the resolution of the Kirchhoff-Love dynamic plate equation. Numer. Meth. Partial Differ. Equ. 21 (2005) 323-348. · Zbl 1079.74060
[11] E. Bécache, J. Rodrguez and C. Tsogka, Convergence results of the fictitious domain method for a mixed formulation of the wave equation with a Neumann boundary condition. ESAIM:M2AN 43 (2009) 377-398. · Zbl 1161.65071
[12] M.A. Biot, General theory of three-dimensional consolidation. J. Appl. Phys. 12 (1941) 155-164. · JFM 67.0837.01
[13] T. Bohlen, Parallel 3D viscoelastic finite difference seismic modelling. Comput. Geosci. 28 (2002) 887-899.
[14] M. Bonnet, A. Burel, M. Duruflé and P. Joly, Effective transmission conditions for thin-layer transmission problems in elastodynamics. The case of a planar layer model. ESAIM:M2AN 50 (2016) 43-75. · Zbl 1339.35312
[15] M.J. Borden, C.V. Verhoosel, M.A. Scott, T.J.R. Hughes and C.M. Landis, A phase-field description of dynamic brittle fracture. Comput. Meth. Appl. Mech. Eng. 217-220 (2012) 77-95. · Zbl 1253.74089
[16] J.M. Carcione, Wave Fields in Real Media, Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media. Elsevier, Amsterdam (2015).
[17] A.H.-D. Cheng, Poroelasticity. Springer, Switzerland (2016).
[18] E.T. Chung, C.Y. Lam and J. Qian, A staggered discontinuous Galerkin method for the simulation of seismic waves with surface topography. Geophysics 80 (2015) T119-T135.
[19] G. Cohen and S. Pernet, Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations. Springer, Dordrecht (2017). · Zbl 1360.65233
[20] R. Courant, K. Friedrichs and H. Lewy, Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100 (1928) 32-74. · JFM 54.0486.01
[21] S. Delcourte and N. Glinsky, Analysis of a high-order space and time discontinuous Galerkin method for elastodynamic equations. Application to 3D wave propagation. ESAIM:M2AN 49 (2015) 1085-1126. · Zbl 1320.74101
[22] A. Ezziani, Modélisation mathématique et numérique de la propagation d’ondes dans les milieux viscoélastiques et poroélastiques. Ph.D. thesis, Univ. Paris IX Dauphine (2005).
[23] C. Farhat, M. Lesoinne and N. Maman, Mixed explicit/implicit time integration of coupled aeroelastic problems: three field formulation, geometric conservation and distributed solution. Int. J. Numer. Meth. Fluids 21 (1995) 807-835. · Zbl 0865.76038
[24] C.A. Felippa, K.C. Park and C. Farhat, Partitioned analysis of coupled mechanical systems. Comput. Methods Appl. Mech. Eng. 190 (2001) 3247-3270. · Zbl 0985.76075
[25] R.W. Graves, Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bull. Seismol. Soc. Amer. 86 (1996) 1091-1106.
[26] A.E. Green and P.M. Naghdi, A general theory of an elastic-plastic continuum. Arch. Rational Mech. Anal. 18 (1965) 251-281. · Zbl 0133.17701
[27] J.-P. Groby, Modélisation de la propagation des ondes élastiques générées par un séisme proche ou éloigné à l’intérieur d’une ville. Ph.D. thesis, Universit de la Méditerranée - Aix-Marseille II (2005).
[28] W. Han and B.D. Reddy, Plasticity. Springer, New York (1999).
[29] M. Hofacker and C. Miehe, Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation. Int. J. Fract. 178 (2012) 113-129.
[30] M. Jirásek, Nonlocal theories in continuum mechanics. Acta Polytech. 44 (2004) 16-34.
[31] P. Joly and C. Tsogka, Finite Element Methods with Discontinuous Displacement. Chapter 11. Chapman & Hall/CRC, Boca Raton, FL (2008). · Zbl 1286.74103
[32] L.M. Kachanov, Time of rupture process under creep conditions. Izv. Akad. Nauk SSSR 8 (1958) 26.
[33] R. Kolman, J. Plešek, J. Červ and D. Gabriel, Grid dispersion analysis of plane square biquadratic serendipity finite elements in transient elastodynamics. Int. J. Numer. Meth. Eng. 96 (2013) 1-28. · Zbl 1352.74380
[34] R. Kolman, J. Plešek, J. Červ, M. Okrouhlk and P. Pařk, Temporal-spatial dispersion and stability analysis of finite element method in explicit elastodynamics. Int. J. Numer. Meth. Eng. 106 (2016) 113-128. · Zbl 1352.74381
[35] M. Kružk and T. Roubček, Mathematical Methods in Continuum Mechanics of Solids. Springer, Switzeland (2019).
[36] G.A. Maugin, The saga of internal variables of state in continuum thermo-mechanics (1893-2013). Mech. Res. Commun. 69 (2015) 79-86.
[37] A. Mielke and T. Roubček, Rate-Independent Systems - Theory and Application. Springer, New York (2015).
[38] Y.N. Rabotnov, Creep Problems in Structural Members. North-Holland, Amsterdam (1969). · Zbl 0184.51801
[39] T. Roubček, Nonlinear Partial Differential Equations with Applications, 2nd edition. Birkhäuser, Basel (2013).
[40] T. Roubček, An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Disc. Cont. Dynam. Syst. S 10 (2017) 867-893. · Zbl 06710672
[41] T. Roubček and C.G. Panagiotopoulos, Energy-conserving time-discretisation of abstract dynamical problems with applications in continuum mechanics of solids. Numer. Funct. Anal. Optim. 38 (2017) 1143-1172. · Zbl 1375.35546
[42] T. Roubček and R. Vodička, A monolithic model for phase-field fracture and waves in solid-fluid media towards earthquakes. Int. J. Fract. 219 (2019) 135.
[43] T. Roubček, M. Kružk, V. Mantič, C.G. Panagiotopoulos, R. Vodička and J. Zeman, Delamination and adhesive contacts, their mathematical modeling and numerical treatment, edited by V. Mantič, 2nd edition. In: Math. Methods and Models in Composites. Imperial College Press (2017).
[44] T. Roubček, C.G. Panagiotopoulos, and C. Tsogka, Explicit time-discretisation of elastodynamics with some inelastic processes at small strains. Preprint arXiv:1903.11654 (2019).
[45] G. Scarella, Etude théorique et numérique de la propagation d’ondes en présence de contact unilatéral dans un milieu fissuré. Ph.D. thesis, Univ. Paris Dauphine (2004).
[46] A. Schlüter, A. Willenbücher, C. Kuhn and R. Müller, Phase field approximation of dynamic brittle fracture. Comput. Mech. 54 (2014) 1141-1161. · Zbl 1311.74106
[47] S. Seifi, K.C. Park and H.S. Park, A staggered explicit-implicit finite element formulation forelectroactive polymers. Comput. Methods Appl. Mech. Eng. 337 (2018) 150-164. · Zbl 1440.74440
[48] B. Straughan, Stability and Wave Motion in Porous Media. Springer, New York (2008). · Zbl 1149.76002
[49] R. Temam, Mathematical Problems in Plasticity (French original in 1983). Gauthier-Villars, Paris (1985). · Zbl 0457.73017
[50] C. Tsogka, Modelisation mathématique et numérique de la propagation des ondes élastiques tridimensionnelles dans des milieux fissurés. Ph.D. thesis, Univ. Paris IX Dauphine (1999).
[51] J. Virieux, SH-wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics 49 (1984) 1933-1957.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.