zbMATH — the first resource for mathematics

On the maximization problem for solutions of reaction-diffusion equations with respect to their initial data. (English) Zbl 07372601
Summary: We consider in this paper the maximization problem for the quantity \(_{\int\Omega}u(t,x)\mathrm{d}x\) with respect to \(u_0=:u(0,\cdot)\), where \(u\) is the solution of a given reaction diffusion equation. This problem is motivated by biological conservation questions. We show the existence of a maximizer and derive optimality conditions through an adjoint problem. We have to face regularity issues since non-smooth initial data could give a better result than smooth ones. We then derive an algorithm enabling to approximate the maximizer and discuss some open problems.
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
35B45 A priori estimates in context of PDEs
35B65 Smoothness and regularity of solutions to PDEs
35K15 Initial value problems for second-order parabolic equations
35K57 Reaction-diffusion equations
35Q92 PDEs in connection with biology, chemistry and other natural sciences
35Q93 PDEs in connection with control and optimization
92D25 Population dynamics (general)
92D30 Epidemiology
Full Text: DOI
[1] L. Almeida, M. Duprez, Y. Privat and N. Vauchelet, Mosquito population control strategies for fighting against arboviruses. Math. Biosci. Eng. 16 (2019) 6274-6297.
[2] L. Almeida, Y. Privat, M. Strugarek and N. Vauchelet, Optimal releases for population replacement strategies, application to Wolbachia. SIAM J. Math. Anal. 51 (2019) 3170-3194. · Zbl 1421.92029
[3] L. Alphey, A. McKemey, D. Nimmo, M, Neira, R. Lacroix, K. Matzen and C. Beech, Genetic control of aedes mosquitoes. Pathogens Glob. Health 107 (2013) 170-179.
[4] N. Barton and M. Turelli, Spatial waves of advances with bistable dynamics: cytoplasmic and genetic analogues of Allee effects. Am. Natural. 78 (2011) E48-E75.
[5] P.-A. Bliman and N. Vauchelet, establishing traveling wave in bistable reaction-diffusion system by feedback. IEEE Control Syst. Lett. 1 (2017) 62-67.
[6] C. Camacho, B. Zou and M. Briani, On the dynamics of capital accumulation across space. Eur. J. Oper. Res. 186 (2008) 451-465. · Zbl 1138.91541
[7] J. Garnier, L. Roques and F. Hamel, Success rate of a biological invasion in terms of the spatial distribution of the founding population. Bull. Math. Biol. 74 (2012) 453-473. · Zbl 1238.92046
[8] A. Hancock, P. Sinkins and H. Charles, Strategies for introducing Wolbachia to reduce transmission of mosquito-borne diseases. PLoS Negl. Trop. Dis. 5 (2011) 1-10.
[9] A. Henrot and M. Pierre, Vol. 48 of Variation et optimisation de formes. Une analyse géométrique · Zbl 1098.49001
[10] A. Hoffmann et al., Successful establishment of Wolbachia in Aedes populations tosuppress dengue transmission. Nature 7361 (2011) 454-457.
[11] H. Hughes and N. Britton, Modeling the use of Wolbachia to control dengue fevertransmission. Bull. Math. Biol. 75 (2013) 796-818. · Zbl 1273.92034
[12] J. Húska, Harnack inequality and exponential separation for oblique derivative problems on Lipschitz domains. J. Differ. Equ. 226 (2006) 541-557. · Zbl 1102.35027
[13] O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Uralceva, Linear and quasilinear equations of parabolic type (1968).
[14] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod; Gauthier-Villars, Paris (1969). · Zbl 0189.40603
[15] E. Trelat, J. Zhu and E. Zuazua, Allee optimal control of a system in ecology. Math. Models Methods Appl. Sci. (2018) 1665-1697. · Zbl 1411.93198
[16] T. Walker et al., The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 7361 (2011) 450-453.
[17] A. Zlatos, Sharp transition between extinction and propagation of reaction. J. Am. Math. Soc. 19 (2005) 251-263. · Zbl 1081.35011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.