×

zbMATH — the first resource for mathematics

A generalized finite difference method for solving elasticity interface problems. (English) Zbl 07371618
Summary: In this paper, a generalized finite difference method (GFDM) is proposed to solve the elasticity interface problem. This method turns the original elasticity interface problem to be some coupled non-interface subproblems. A large sparse matrix can be yielded by those subproblems. Since this method makes the interface become a part of boundaries of subproblems, it can deal well with problems with complex geometrical interfaces. Moreover, this method can also deal well with the interface conditions with derivatives, because the GFDM uses a linear summation of nearby nodal values to express the derivatives of unknown variables. Numerical examples are provided to verify the accuracy and stability of the proposed method for elasticity interface problems. They show that the \(H^1\) error of the method has the almost same convergence rate as the \(L_2\) error and the size of jumps in the interface conditions only has a little effect on the stability of the proposed method.
MSC:
74-XX Mechanics of deformable solids
65-XX Numerical analysis
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bänsch, E.; Haußer, F.; Lakkis, O.; Li, B.; Voigt, A., Finite element method for epitaxial growth with attachment-detachment kinetics, J Comput Phys, 194, 409-434 (2004) · Zbl 1100.82024
[2] Wei, G. W., Differential geometry based multiscale models, Bull Math Biol, 72, 1562-1622 (2010) · Zbl 1198.92001
[3] Yang, X.; Li, B.; Li, Z., The immersed interface method for elasticity problems with interface, Dynam Contin Discrete Impuls Syst, 10, 783-808 (2003) · Zbl 1140.74575
[4] Feng, K.; Shi, Z., Mathematical theory of elastic structures (1996), Science Press
[5] Wei, G. W., Multiscale, multiphysics and multidomain models I: basic theory, J Theor Comput Chem, 12, 8, Article 1341006 pp. (2013)
[6] Xia, K. L.; Opron, K.; Wei, G. W., Multiscale multiphysics and multidomain models—flexibility and rigidity, J Chem Phys, 139, Article 194109 pp. (2013)
[7] Wang, B.; Xia, K. L.; Wei, G. W., Matched interface and boundary method for elasticity interface problems, J Comput Appl Math, 285, 203-225 (2015) · Zbl 1325.74159
[8] Wang, B.; Xia, K. L.; Wei, G. W., Second order method for solving 3D elasticity equations with complex interfaces, J Comput Phys, 294, 405-438 (2015) · Zbl 1349.74367
[9] Anaya, V.; Wiji, Z. De.; Gómez-Vargas, B.; Mora, D.; Ruiz-Baier, R., Rotation-based mixed formulations for an elasticity-poroelasticity interface problem, SIAM J Sci Comput, 42, 1, B225-B249 (2020) · Zbl 1455.65208
[10] Xie, H.; Z. L.Li, Z. H.Qiao, A finite element method for elasticity interface problems with locally modified triangulations, Int J Numer Anal Model, 8, 2, 189-200 (2011) · Zbl 1208.74170
[11] Gong, Y.; Li, Z. L., Immersed interface finite element methods for elasticity interface problems with non-homogeneous jump conditions, Numer Math Theor Methods Appl, 3, 1, 23-39 (2010) · Zbl 1224.65266
[12] Qin, F. F.; Chen, J. R.; Li, Z. L.; Cai, M. C., A Cartesian grid nonconforming immersed finite element method for planar elasticity interface problems, Comput Math Appl, 73, 404-418 (2017) · Zbl 1368.74065
[13] T. Lin, X. Zhang, Linear and bilinear immersed finite elements for planar elasticity interface problems, 236 (2012) 4681-4699. · Zbl 1247.74061
[14] Guo, R. C.; Lin, T.; Lin, Y. P., Approximation capabilities of immersed finite element spaces for elasticity interface problems, Numer Methods Partial Differ Equ, 35, 3, 1243-1268 (2019) · Zbl 1418.65174
[15] Gong, Y.; Li, B.; Li, Z., Immersed-interface finite element methods for elliptic interface problems with nonhomogeneous jump condition, SIAM J Numer Anal, 46, 472-495 (2008) · Zbl 1160.65061
[16] He, X. M.; Lin, T.; Lin, Y., Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions, Int J Numer Anal, Model, 8, 284-301 (2011) · Zbl 1211.65155
[17] He, X. M.; Lin, T.; Lin, Y. P., Approximation capability of a bilinear immersed finite element space, Numer Methods Part Differ Eq, 24, 5, 1265-1300 (2008) · Zbl 1154.65090
[18] Han, D. R.; Wang, P.; He, X. M.; Lin, T.; Wang, J., A 3D immersed finite element method with non-homogeneous interface flux jump for applications in particle-in-cell simulations of plasma-lunar surface interactions, J Comput Phys, 321, 965-980 (2016) · Zbl 1349.76212
[19] Cao, H. J.; Cao, Y.; Chu, Y. C.; He, X. M.; Lin, T., A Huygens immersed-finite-element particle-in-cell method for modeling plasma-surface interactions with moving interface, Commun Nonlinear Sci Numer Simul, 59, 132-148 (2018) · Zbl 07263332
[20] Wang, Z. J.; Zhang, Z. W., A mesh-free method for interface problems using the deep learning approach, J Comput Phys, 400, Article 108963 pp. (2020) · Zbl 1454.65173
[21] Martins, N. F.M.; Rebelo, M., A meshfree method for elasticity problems with interfaces, Appl Math Comput, 219, 10732-10745 (2013) · Zbl 1298.74252
[22] Saucedo-Zendejo, F. R.; Reséndiz-Flores, E. O., Meshfree numerical approach based on the Finite Pointset Method for static linear elasticity problems, Comput Methods Appl Mech Eng (2020) · Zbl 07337863
[23] Tiwari, S.; Kuhnert, J., Modeling of two-phase flows with surface tension by finite pointset method (FPM), J Comput Appl Math, 203, 376-386 (2007) · Zbl 1113.76074
[24] Orkisz, J., Meshless finite difference method I. Basic approach, (Idelshon, Oňate; Duorkin, Computational mechanics IACM (1998), CINME)
[25] Benito, J. J.; Urena, F.; Gavete, L., Influence of several factors in the generalized finite difference method, Appl Math Model, 25, 1039-1053 (2011) · Zbl 0994.65111
[26] Ureña, F.; Salete, E.; Benito, J. J.; Gavete, L., Solving third-and fourth-order partial differential equations using GFDM: application to solve problems of plates, Int J Comput Math, 89, 3, 366-376 (2012) · Zbl 1242.65217
[27] Gavete, L.; Ureña, F.; Benito, J. J.; García, A.; Ureñ, M.; Salete, E., Solving second order non-linear elliptic partial differential equations using generalized finite difference method, J Comput Appl Math, 318, 378-387 (2017) · Zbl 1357.65232
[28] Salete, E.; Benito, J. J.; Ureña, F.; Gavete, L.; Ureñ, M.; García, A., Stability of perfectly matched layer regions in generalized finite difference method for wave problems, J Comput Appl Math, 312, 231-239 (2017) · Zbl 1351.65060
[29] Fan, C. M.; Li, P. W.; Yeih, W. C., Generalized finite difference method for solving two-dimensional inverse Cauchy problems, Inverse Probl Sci Eng, 23, 5, 737-759 (2015) · Zbl 1329.65257
[30] Gu, Y.; Wang, L.; Chen, W.; Zhang, C. Z.; He, X. Q., Application of the meshless generalized finite difference method to inverse heat source problems, Int J Heat Mass Tran, 108, 721-729 (2017)
[31] Song, L. N.; Li, P. W.; Gu, Y.; Fan, C. M., Generalized finite difference method for solving stationary 2D and 3D stokes equations with a mixed boundary condition, Comput Math Appl, 80, 1726-1743 (2020) · Zbl 1451.76084
[32] Xing, Y. N.; Song, L. N.; He, X. M.; Qiu, C. X., A generalized finite difference method for solving elliptic interface problems, Math Comput Simul, 178, 109-124 (2020) · Zbl 07318131
[33] Li, P. W.; Fu, Z. J.; Gu, Y.; Song, L. N., The generalized finite difference method for the inverse Cauchy problem in two-dimensional isotropic linear elasticity, Int J Solids Struct, 174-175, 69-84 (2019)
[34] Hidayat, M. I.P.; Widyastuti, R. Fajarin, A meshless generalized finite difference method for 2D elasticity problems, Eng Anal Bound Elem, 117, 89-103 (2020) · Zbl 1464.74364
[35] Li, P. W.; Chen, W.; Fu, Z. J.; Fan, C. M., Generalized finite difference method for solving the double-diffusive natural convection in fluid-saturated porous media, Eng Anal Bound Elem, 95, 175-186 (2018) · Zbl 1403.76132
[36] Li, P. W.; Fan, C. M., The generalized finite difference method for two-dimensional shallow water equations, Eng Anal Bound Elem, 80, 58-71 (2017) · Zbl 1403.76133
[37] Gu, Y.; Lei, J.; Fan, C. M.; He, X. Q., The generalized finite difference method for an inverse time-dependent source problem associated with three-dimensional heat equation, Eng Anal Bound Elem, 91, 73-81 (2018) · Zbl 1403.65039
[38] Fan, C. M.; Li, P. W., Generalized finite difference method for solving two-dimensional Burgers’ equations, Procedia Eng, 79, 55-60 (2014)
[39] Gavete, L.; Urena, F.; Benito, J. J.; Salete, E., A note on the dynamic analysis using the generalized finite difference method, J Comput Appl Math, 252, 132-147 (2013) · Zbl 1290.74043
[40] Gavete, L.; Benito, J. J.; Ureña, F., Generalized finite differences for solving 3D elliptic and parabolic equations, Appl Math Model, 40, 955-965 (2016) · Zbl 1446.74214
[41] Hua, Q.; Gu, Y.; Qu, W.; Chen, W.; Zhang, C., A meshless generalized finite difference method for inverse Cauchy problems associated with three-dimensional inhomogeneous Helmholtz-type equations, Eng Anal Bound Elem, 82, 162-171 (2017) · Zbl 1403.65118
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.