×

A convex fourth order yield function for orthotropic metal plasticity. (English) Zbl 1480.74034

Summary: M. Gotoh [Int. J. Mech. Sci. 19, 505–512 (1977; Zbl 0373.73038)] proposed the first fourth order polynomial yield function under plane stress states that could simultaneously represent both yield stress and r-value directional properties of orthotropic sheet metals. The parameter identification procedure of this model can result in unbalanced overall errors in the anisotropy description, and the convexity of this yield function is not guaranteed. In this regard, a direct method is proposed to uniquely determine the nine model parameters using four yield stress and three r-value measurements. Out of them, only three expressions are new, and the rest remain identical to the published version of Gotoh. However, it is necessary to check the convexity restrictions on the obtained model parameters. Therefore, model parameters of two dissimilar materials that violate these restrictions are accurately identified from the literature. And, an effective procedure to reestablish the yield function convexity using new bounds on equi-biaxial stress is suggested. In the second part, an inverse method for the identification of the yield function parameters is proposed. In this approach, seven nonlinear expressions are solved together to determine the nine parameters of the convex guaranteed Gotoh’s yield function. The advantages and disadvantages of two methods are discussed in detail by comparing with the existing ones in recent literature. It is shown that both these methods are successful in representing the anisotropic behavior of both aluminum and steel experimental data’s available in the literature. In addition, a new 3D extension of the Gotoh’s yield function is suggested by introducing four additional parameters to capture the influence of out of plane shear stresses. When all the parameters are set to a unit value, the yield function exactly coincides with the 3D von-Mises yield function. Further, the direct approach is extended to account for distortional hardening behavior of fcc and bcc materials.

MSC:

74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74E10 Anisotropy in solid mechanics

Citations:

Zbl 0373.73038
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Abspoel, M.; Scholting, M. E.; Lansbergen, M.; An, Y.; Vegter, H., A new method for predicting advanced yield criteria input parameters from mechanical properties, J. Mater. Process. Technol., 248, 161-177 (2017)
[2] Adzima, F.; Balan, T.; Manach, P. Y.; Bonnet, N.; Tabourot, L., Crystal plasticity and phenomenological approaches for the simulation of deformation behavior in thin copper alloy sheets, Int. J. Plast., 94, 171-191 (2017)
[3] An, Y.; Vegter, H.; Carless, L.; Lambriks, M., A novel yield locus description by combining the Taylor and the relaxed Taylor theory for sheet steels, Int. J. Plast., 27, 1758-1780 (2011) · Zbl 1426.74064
[4] Aretz, H., A Non-quadratic Plane Stress Yield Function for Orthotropic Sheet Metals, vol. 168, 1-9 (2005)
[5] Aretz, H., A simple isotropic-distortional hardening model and its application in elastic-plastic analysis of localized necking in orthotropic sheet metals, Int. J. Plast., 24, 1457-1480 (2008) · Zbl 1140.74412
[6] Aretz, H.; Engler, O., Accuracy assessment of analytical earing models, Eur. J. Mech. Solid., 78 (2019), 103839 · Zbl 1473.74021
[7] Arminjon, M.; Bacroix, B.; Imbault, D., A fourth-order plastic potential for anisotropic metals and its analytical calculation from the texture function, Acta Mech., 107, 33-51 (1994) · Zbl 0848.73005
[8] Baiker, M.; Helm, D.; Butz, A., Determination of mechanical properties of polycrystals by using crystal plasticity and numerical homogenization, Schemes, 85, 988-998 (2014)
[9] Banabic, D., Sheet metal forming processes, sheet metal forming processes: constitutive modelling and numerical simulation (2010)
[10] Banabic, D.; Aretz, H.; Comsa, D. S.; Paraianu, L., An improved analytical description of orthotropy in metallic sheets, Int. J. Plast., 21, 493-512 (2005) · Zbl 1154.74306
[11] Barlat, F.; Lian, K., Plastic behavior and stretch ability of sheet metals. Part I: a yield function for orthotropic sheets under plane stress conditions, Int. J. Plast., 5, 51-66 (1989)
[12] Barlat, F.; Lege, D. J.; Brem, J. C., A six-component yield function for anisotropic materials, Int. J. Plast., 7, 693-712 (1991)
[13] Barlat, F.; Becker, R. C.; Hayashida, Y.; Maeda, Y.; Yanagawa, M.; Chung, K.; Brem, J. C.; Lege, D. J.; Matsui, K.; Murtha, S. J.; Hattori, S., Yielding description for solution strengthened aluminum alloys, Int. J. Plast., 13, 385-401 (1997)
[14] Barlat, F.; Maeda, Y.; Chung, K.; Yanagawa, M.; Brem, J. C.; Hayashida, Y.; Lege, D. J.; Matsui, K.; Murtha, S. J.; Hattori, S.; Becker, R. C.; Makosey, S., Yield function development for aluminum alloy sheets, J. Mech. Phys. Solid., 45, 1727-1763 (1997)
[15] Barlat, F.; Brem, J. C.; Yoon, J. W.; Chung, K.; Dick, R. E.; Lege, D. J.; Pourboghrat, F.; Choi, S. H.; Chu, E., Plane stress yield function for aluminum alloy sheets—part 1: theory, Int. J. Plast., 19, 1297-1319 (2003) · Zbl 1114.74370
[16] Barlat, F.; Aretz, H.; Yoon, J. W.; Karabin, M. E.; Brem, J. C.; Dick, R. E., Linear transfomation-based anisotropic yield functions, Int. J. Plast., 21, 1009-1039 (2005) · Zbl 1161.74328
[17] Barlat, F.; Yoon, J. W.; Cazacu, O., On linear transformations of stress tensors for the description of plastic anisotropy, Int. J. Plast., 23, 876-896 (2007) · Zbl 1359.74014
[18] Bourne, L.; Hill, R., On the correlation of the directional properties of rolled sheet in tension and cupping tests, Philos. Mag. A, 41, 671-681 (1950)
[19] Bron, F.; Besson, J., A yield function for anisotropic materials Application to aluminum alloys, Int. J. Plast., 20, 937-963 (2004) · Zbl 1254.74105
[20] Butz, A.; Pagenkopf, J.; Baiker, M.; Silbermann, K.; Landgrebe, D., Virtuelle Kennwertermittlung für die Umformsimulation von Feinblechen - Teil 2 (2017)
[21] Butz, A.; Wessel, A.; Pagenkopf, J.; Helm, D., Parameter identification of 3D yield functions based on a virtual material testing procedure, IOP Conf. Ser. Mater. Sci. Eng., 651, 1, Article 012078 pp. (2019)
[22] Cardoso, R. P.R.; Adetoro, O. B., A generalisation of the Hill’s quadratic yield function for planar plastic anisotropy to consider loading direction, Int. J. Mech. Sci., 253-268 (2017), 128-129
[23] Cazacu, O., New mathematical results and explicit expressions in terms of stress components of Barlat et al. (1991) orthotropic yield criterion, Int. J. Solid Struct., 176-177, 86-95 (2019)
[24] Cazacu, O.; Revil-Baudard, B.; Chandola, N., Plasticity-Damage Couplings: from Single Crystal to Polycrystalline Materials 253 (2019), Springer · Zbl 1405.74001
[25] Chen, K.; Scales, M.; Kyriakides, S., Material hardening of a high ductility aluminum alloy from a bulge test, Int. J. Mech. Sci., 476-488 (2018), 138-139
[26] Chung, K.; Kim, D.; Park, T., Analytical derivation of earing in circular cup drawing based on simple tension properties, Eur. J. Mech. Solid., 30, 275-280 (2011) · Zbl 1278.74017
[27] Dick, R. E.; Yoon, J. W.; Huh, H. S.; Bae, G., BM1 - Earing Evolution during Drawing and Ironing processes, (Huh, H.; Chung, K.; Han, S. S.; Chung, W. J., Proc. of the 8th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes (2011), Kaist Press), 171-226
[28] Dunand, M.; Maertens, A. P.; Luo, M.; Mohr, D., Experiments and modeling of anisotropic aluminum extrusions under multi-axial loading - Part I: Plasticity, Int. J. Plast., 36, 34-49 (2012)
[29] Eriksen, GRA-6035, mathematics; lecture 5 principal minors and the hessian (2010)
[30] Gawad, J.; Banabic, D.; Van Bael, A.; Comsa, D. S.; Gologanu, M.; Eyckens, P.; Van Houtte, P.; Roose, D., An evolving plane stress yield criterion based on crystal plasticity virtual experiments, Int. J. Plast., 75, 141-169 (2014)
[31] Gotoh, M., A theory of plastic anisotropy based on yield function of fourth order (plane stress state)-I, Int. J. Mech. Sci., 19, 505-512 (1977) · Zbl 0373.73038
[32] Green, D. E.; Neale, K. W.; MacEwen, S. R.; Makinde, A.; Perrin, R., Experimental investigation of the biaxial behaviour of an aluminum sheet, Int. J. Plast., 20, 1677-1706 (2004) · Zbl 1066.74502
[33] Ha, J.; Baral, M.; Korkolis, Y. P., Plastic anisotropy and ductile fracture of bake-hardened AA6013 aluminum sheet, Int. J. Solid Struct., 155, 123-139 (2018)
[34] Hashimoto, K.; Kuwbara, T.; Iizuka, E.; Yoon, J. W., Effect of anisotropic yield functions on the accuracy of hole expansion simulations for 590 MPa grade steel sheet, Tetsu to Hagane, 96, B27-B33 (2010)
[35] Helm, D.; Butz, A.; Helm, D.; Butz, A.; Raabe, D.; Gumbsch, P., Microstructure-Based Description of the Deformation of Metals : Theory and Application Microstructure-Based Description of the Deformation of Metals : Theory and Application (2011)
[36] Hill, R., A theory of the yielding and plastic flow of anisotropic metals, Proc. Roy. Soc. London. Ser. A, 193, 281-297 (1948) · Zbl 0032.08805
[37] Hill, R., The Mathematical Theory of Plasticity (1950), Oxford University Press: Oxford University Press Oxford · Zbl 0041.10802
[38] Hill, R., Constitutive modelling of orthotropic plasticity in sheet metals, J. Mech. Phys. Solid., 38, 405-417 (1990) · Zbl 0713.73044
[39] Hill, R.; Hutchinson, J. W., Differential hardening in sheet metal under biaxial loading: a theoretical framework, J. Appl. Mech., 59, S1-S9 (1992) · Zbl 0825.73181
[40] Hill, R.; Hecker, S. S.; Stout, M. G., An investigation of plastic flow and differential work hardening in orthotropic brass tubes under fluid pressure and axial load, Int. J. Solid Struct., 31, 2999-3021 (1994) · Zbl 0943.74509
[41] Hosford, W. F., A generalized isotropic yield criterion, J. Appl. Mech. Trans. ASME, 39, 607-609 (1972)
[42] Hou, Y.; Min, J.; Stoughton, T. B.; Lin, J.; Carsley, J. E.; Carlson, B. E., A non-quadratic pressure-sensitive constitutive model under non-associated flow rule with anisotropic hardening: modeling and validation, Int. J. Plast., 135, 102808 (2020)
[43] Hu, W., An orthotropic yield criterion in a 3-D general stress state, Int. J. Plast., 21, 1771-1796 (2005) · Zbl 1114.74373
[44] Hu, W., Constitutive modeling of orthotropic sheet metals by presenting hardening-induced anisotropy, Int. J. Plast., 23, 620-639 (2007) · Zbl 1110.74017
[45] Inoue, T.; Takizawa, H.; Kuwabara, T.; Nomura, S., BENCHMARK 2 - Cup Drawing of Anisotropic Thick Steel Sheet (2018), NUmisheet 2018, July 30-August 3, Tokyo, Japan
[46] Kuwabara, T., Advances in experiments on metal sheets and tubes in support of constitutive modeling and forming simulations, Int. J. Plast., 23, 385-419 (2007) · Zbl 1349.74010
[47] Kuwabara, T.; Ikeda, S.; Kuroda, K., Measurement and analysis of differential work hardening in cold-rolled steel sheet under biaxial tension, J. Mater. Process. Technol. 80-, 81, 517-523 (1998)
[48] Kuwabara, T.; Mori, T.; Asano, M.; Hakoyama, T.; Barlat, F., Material modeling of 6016-O and 6016-T4 aluminum alloy sheets and application to hole expansion forming simulation, Int. J. Plast. (2016)
[49] Lademo, O. G.; Hopperstad, O. S.; Langseth, M., Evaluation of yield criteria and flow rules for aluminum alloys, Int. J. Plast., 15, 191-208 (1999) · Zbl 1056.74502
[50] Lankford, W. T.; Snyder, S. C.; Bausher, J. A., New criteria for predicting the press performance of deep drawing sheets, Trans. Am. Soc. Met., 42, 1197-1205 (1950)
[51] Leacock, A. G., A mathematical description of orthotropy in sheet metals, J. Mech. Phys. Solid., 54, 425-444 (2006) · Zbl 1120.74385
[52] Lebensohn, R. A.; Tomé, C. N., A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys, Acta Metall. Mater., 41, 2611-2624 (1993)
[53] Lenzen, M.; Merklein, M., Improvement of numerical modelling considering plane strain material characterization with an elliptic hydraulic bulge test, J. Manuf. Mater. Process, 2, 1 (2018), 6
[54] Logan, R. W.; Hosford, W. F., Upper-bound anisotropic yield locus calculations assuming pencil glide, Int. J. Mech. Sci., 22, 419-430 (1980)
[55] Lou, Y.; Yoon, J. W., Anisotropic yield function based on stress invariants for BCC and FCC metals and its extension to ductile fracture criterion, Int. J. Plast., 101, 125-155 (2018)
[56] Mendiguren, J.; Galdos, L.; Saenz de Argandoña, E., On the plastic flow rule formulation in anisotropic yielding aluminium alloys, Int. J. Adv. Manuf. Technol., 99, 255-274 (2018)
[57] Min, J.; Stoughton, T. B.; Carsley, J. E.; Carlson, B. E.; Lin, J.; Gao, X., Accurate characterization of biaxial stress-strain response of sheet metal from bulge testing, Int. J. Plast., 94, 192-213 (2017)
[58] Mises, R. V., Mechanik der plastischen Formänderung von Kristallen, Z. Angew. Math. Mech., 8, 161-185 (1928) · JFM 54.0877.01
[59] Mohr, D.; Jacquemin, J., Large deformation of anisotropic austenitic stainless steel sheets at room temperature: multi-axial experiments and phenomenological modeling, J. Mech. Phys. Solid., 56, 2935-2956 (2008)
[60] Mulder, J.; Vegter, H.; Aretz, H.; Keller, S.; van den Boogaard, A. H., Accurate determination of flow curves using the bulge test with optical measuring systems, J. Mater. Process. Technol., 226, 169-187 (2015)
[61] Pearce, R., Some aspects of anisotropic plasticity in sheet metals, Int. J. Mech. Sci., 10, 995-1004 (1968)
[62] Plunkett, B.; Lebensohn, R. A.; Cazacu, O.; Barlat, F., Anisotropic yield function of hexagonal materials taking into account texture development and anisotropic hardening, Acta Mater., 54, 4159-4169 (2006)
[63] Rabahallah, M.; Balan, T.; Bouvier, S.; Bacroix, B.; Barlat, F.; Chung, K.; Teodosiu, C., Parameter identification of advanced plastic strain rate potentials and impact on plastic anisotropy prediction, Int. J. Plast., 25, 491-512 (2009) · Zbl 1157.74007
[64] Raemy, C.; Manopulo, N.; Hora, P., A generalized anisotropic and asymmetric yield criterion with adjustable complexity, Compt. Rendus Mec., 346, 779-793 (2018)
[65] Soare, S.; Barlat, F., Convex polynomial yield functions, J. Mech. Phys. Solid., 58, 1804-1818 (2010) · Zbl 1225.74017
[66] Soare, S.; Yoon, J. W.; Cazacu, O., On the use of homogeneous polynomials to develop anisotropic yield functions with applications to sheet forming, Int. J. Plast., 24, 915-944 (2008) · Zbl 1394.74024
[67] Stoughton, T. B., A non-associated flow rule for sheet metal forming, Int. J. Plast., 18, 687-714 (2002) · Zbl 1040.74012
[68] Stoughton, T. B.; Yoon, J. W., Anisotropic hardening and non-associated flow in proportional loading of sheet metals, Int. J. Plast., 25, 1777-1817 (2009) · Zbl 1168.74016
[69] Suzuki, T.; Okamura, K.; Capilla, G.; Hamasaki, H.; Yoshida, F., Effect of anisotropy evolution on circular and oval hole expansion behavior of high-strength steel sheets, Int. J. Mech. Sci., 556-570 (2018), 146-147
[70] Tamura, S.; Sumikawa, S.; Hamasaki, H.; Uemori, T.; Yoshida, F., Elasto-plasticity behavior of type 50 0 0 and 60 0 0 aluminum alloy sheets ad its constitutive mod- eling, (Barlat, F.; Moon, Y. H.; Lee, M. G., Proceedings of the of the 10th International Conference on Numerical Methods in Industrial Forming Processes, NUMIFORM 2010 (2010)), 630-637
[71] Tardif, N.; Kyriakides, S., Determination of anisotropy and material hardening for aluminum sheet metal, Int. J. Solid Struct., 49, 3496-3506 (2012)
[72] Tong, W., Generalized fourth-order Hill’s 1979 yield function for modeling sheet metals in plane stress, Acta Mech., 227, 2719-2733 (2016) · Zbl 1469.74024
[73] Tong, W., Application of gotoh’s orthotropic yield function for modeling advanced high-strength steel Sheets, J. Manuf. Sci. Eng. Trans. ASME, 138, 1-5 (2016)
[74] Tong, W., An improved method of determining Gotoh’s nine material constants for a sheet metal with only seven or less experimental inputs, Int. J. Mech. Sci., 140, 394-406 (2018)
[75] Tong, W., Algebraic convexity conditions for gotoh’s nonquadratic yield function, J. Appl. Mech., 85, Article 074501 pp. (2018)
[76] Tong, W.; Alharbi, M., Comparative evaluation of non-associated quadratic and associated quartic plasticity models for orthotropic sheet metals, Int. J. Solid Struct., 1-16 (2017), 0
[77] Van Den Boogaard, T.; Havinga, J.; Belin, A., Parameter reduction for the Yld2004-18p yield criterion, Int. J. Material Form., 9, 175-178 (2016)
[78] van Houtte, P.; Clarke, P.; Saimoto, S., A quantitative analysis of earing during deep drawing, (Morris, J. G.; Merchant, H. D.; Westerman, E. J.; Morris, P. L., Aluminum Alloys for Packaging (1993), Metals & Materials Society), 261-273, (The Minerals)
[79] Vegter, H.; Van Den Boogaard, A. H., A plane stress yield function for anisotropic sheet material by interpolation of biaxial stress states, Int. J. Plast., 22, 557-580 (2006) · Zbl 1138.74303
[80] Vrh, M.; Halilovič, M.; Starman, B.; Štok, B.; Comsa, D. S.; Banabic, D., Capability of the BBC2008 yield criterion in predicting the earing profile in cup deep drawing simulations, Eur. J. Mech. Solid., 45, 59-74 (2014) · Zbl 1406.74158
[81] Wiebenga, J. H.; Atzema, E. H.; An, Y. G.; Vegter, H.; van den Boogaard, A. H., Effect of material scatter on the plastic behavior and stretchability in sheet metal forming, J. Mater. Process. Technol., 214, 238-252 (2014)
[82] Yoon, J. W.; Barlat, F.; Dick, R. E.; Chung, K.; Kang, T. J., Plane stress yield function for aluminum alloy sheets - Part II: FE formulation and its implementation, Int. J. Plast., 20, 495-522 (2004) · Zbl 1254.74113
[83] Yoon, J. W.; Dick, R. E.; Barlat, F., A new analytical theory for earing generated from anisotropic plasticity, Int. J. Plast., 27, 1165-1184 (2011) · Zbl 1426.74074
[84] Yoshida, F.; Hamasaki, H.; Uemori, T., A user-friendly 3D yield function to describe anisotropy of steel sheets, Int. J. Plast., 45, 119-139 (2013)
[85] Yoshida, F.; Hamasaki, H.; Uemori, T., Modeling of anisotropic hardening of sheet metals including description of the Bauschinger effect, Int. J. Plast., 75, 170-188 (2015)
[86] Zhang, H.; Diehl, M.; Roters, F.; Raabe, D., A virtual laboratory using high resolution crystal plasticity simulations to determine the initial yield surface for sheet metal forming operations, Int. J. Plast., 80, 111-138 (2016)
[87] Zhang, K.; Holmedal, B.; Mánik, T.; Saai, A., Assessment of advanced Taylor models, the Taylor factor and yield surface exponent for FCC metals, Int. J. Plast., 1-17 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.