×

Computation of brittle fracture propagation in strain gradient materials by the FEniCS library. (English) Zbl 07357405

Summary: Strain gradient continuum damage modelling has been applied to quasistatic brittle fracture within an approach based on a maximum energy-release rate principle. The model was implemented numerically, making use of the FEniCS open-source library. The considered model introduces non-locality by taking into account the strain gradient in the deformation energy. This allows for stable computations of crack propagation in differently notched samples. The model can take wedges into account, so that fracture onset can occur at wedges. Owing to the absence of a damage gradient term in the dissipated energy, the normal part of the damage gradient is not constrained on boundaries. Thus, non-orthogonal and non-parallel intersections between cracks and boundaries can be observed.

MSC:

74-XX Mechanics of deformable solids

Software:

FEniCS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Cuomo, M, Contrafatto, L, Greco, L. A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int J Eng Sci 2014; 80: 173-188. · Zbl 1423.74055 · doi:10.1016/j.ijengsci.2014.02.017
[2] Bourdin, B, Francfort, GA, Marigo, J-J. The variational approach to fracture. J Elast 2008; 91: 5-148. · Zbl 1176.74018 · doi:10.1007/s10659-007-9107-3
[3] Pham, K, Marigo, J-J, Maurini, C. The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. J Mech Phys Solids 2011; 59(6): 1163-1190. · Zbl 1270.74015 · doi:10.1016/j.jmps.2011.03.010
[4] Placidi, L, Barchiesi, E. Energy approach to brittle fracture in strain-gradient modelling. Proc R Soc London, Ser A 2018; 474(2210): 20170878. · Zbl 1402.74094 · doi:10.1098/rspa.2017.0878
[5] Bilotta, A, Morassi, A, Turco, E. The use of quasi-isospectral operators for damage detection in rods. Meccanica 2018; 53(1-2): 319-345. · Zbl 1390.74084 · doi:10.1007/s11012-017-0728-8
[6] Bilotta, A, Morassi, A, Turco, E. Damage identification in longitudinally vibrating rods based on quasi-isospectral operators. In: 8th European Workshop on Structural Health Monitoring (EWSHM 2016), 2016. · Zbl 1390.74084
[7] Misra, A. Effect of asperity damage on shear behavior of single fracture. Eng Fract Mech 2002; 69(17): 1997-2014. · doi:10.1016/S0013-7944(02)00073-5
[8] Volkov, IA, Igumnov, LA, dell’Isola, F et al. A continual model of a damaged medium used for analyzing fatigue life of polycrystalline structural alloys under thermal-mechanical loading. Continuum Mech Thermodyn 2020; 32(1): 229-245. · doi:10.1007/s00161-019-00795-x
[9] Nasedkina, A, Eremeyev, V, Nasedkin, A. Finite element simulation of transient axisymmetric thermoelastic problems for heterogeneous media with physical nonlinearities and circular fractures. In: IV European Conference on Computational Mechanics, 2010.
[10] Della Corte, A, Battista, A, dell’Isola, F et al. (2017). Modeling deformable bodies using discrete systems with centroid-based propagating interaction: fracture and crack evolution. In: dell’Isola, F et al. (eds.) Mathematical modelling in solid mechanics (Advanced Structured Materials, vol. 69). Singapore: Springer, 59-88. · Zbl 1387.74008 · doi:10.1007/978-981-10-3764-1_5
[11] Contrafatto, L, Cuomo, M. A framework of elastic-plastic damaging model for concrete under multiaxial stress states. Int J Plast 2006; 22(12): 2272-2300. · Zbl 1229.74122 · doi:10.1016/j.ijplas.2006.03.011
[12] Cuomo, M, Fagone, M. Model of anisotropic elastoplasticity in finite deformations allowing for the evolution of the symmetry group. Nanomech Sci Technol 2015; 6(2): 135-160.
[13] Cuomo, M. Forms of the dissipation function for a class of viscoplastic models. Math Mech Complex Syst 2017; 5(3): 217-237. · Zbl 1386.74007 · doi:10.2140/memocs.2017.5.217
[14] Yang, Y, Misra, A. Higher-order stress-strain theory for damage modeling implemented in an element-free Galerkin formulation. Comput Model Eng Sci 2010; 64(1): 1-36. · Zbl 1231.74023
[15] Misra, A, Singh, V. Micromechanical model for viscoelastic materials undergoing damage. Continuum Mech Thermodyn 2013; 25(2-4): 343-358. · Zbl 1343.74039 · doi:10.1007/s00161-012-0262-9
[16] Misra, A, Poorsolhjouy, P. Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics. Math Mech Solids. Epub ahead of print 24 March 2015. DOI: 10.1177/1081286515576821. · Zbl 07259257 · doi:10.1177/1081286515576821.
[17] Chen, Q, Wang, G. Computationally-efficient homogenization and localization of unidirectional piezoelectric composites with partially cracked interface. Compos Struct 2020; 232: 111452. · doi:10.1016/j.compstruct.2019.111452
[18] dell’Isola, F, Maier, G, Perego, U et al. The complete works of Gabrio Piola: vol. I. Cham: Springer, 2014. · Zbl 1305.74003 · doi:10.1007/978-3-319-00263-7
[19] dell’Isola, F, Andreaus, U, Placidi, L. At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math Mech Solids 2015; 20(8): 887-928. · Zbl 1330.74006
[20] dell’Isola, F, Della Corte, A, Giorgio, I. Higher-gradient continua: the legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Math Mech Solids 2017; 22(4): 852-872. · Zbl 1371.74024
[21] Misra, A, Singh, V. Thermomechanics-based nonlinear rate-dependent coupled damage-plasticity granular micromechanics model. Continuum Mech Thermodyn 2015; 27(4-5): 787-817. · Zbl 1341.74048 · doi:10.1007/s00161-014-0360-y
[22] Toupin, RA. Elastic materials with couple-stresses. Arch Ration Mech Anal 1962; 11(1): 385-414. · Zbl 0112.16805 · doi:10.1007/BF00253945
[23] Mindlin, RD, Tiersten, HF. Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal 1962; 11(1): 415-448. · Zbl 0112.38906 · doi:10.1007/BF00253946
[24] Eremeyev, VA, Lebedev, LP, Altenbach, H. Foundations of micropolar mechanics. Berlin: Springer Science & Business Media, 2012. · Zbl 1257.74002
[25] Eremeyev, VA, Altenbach, H. Equilibrium of a second-gradient fluid and an elastic solid with surface stresses. Meccanica 2014; 49(11): 2635-2643. · Zbl 1306.76010 · doi:10.1007/s11012-013-9851-3
[26] Eremeyev, VA, Pietraszkiewicz, W. Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Math Mech Solids 2016; 21(2): 210-221. · Zbl 1332.74003
[27] Eremeyev, VA, dell’Isola, F, Boutin, C et al. Linear pantographic sheets: existence and uniqueness of weak solutions. J Elast 2018; 132(2): 175-196. · Zbl 1398.74011 · doi:10.1007/s10659-017-9660-3
[28] Tu, W, Chen, Q. Evolution of interfacial debonding of a unidirectional graphite/polyimide composite under off-axis loading. Eng Fract Mech 2020; 230: 106947. · doi:10.1016/j.engfracmech.2020.106947
[29] Giorgio, I. Numerical identification procedure between a micro-Cauchy model and a macro-second gradient model for planar pantographic structures. Z Angew Math Phys 2016; 67(4): 95. · Zbl 1359.74018 · doi:10.1007/s00033-016-0692-5
[30] Placidi, L, Andreaus, U, Giorgio, I. Identification of two-dimensional pantographic structures via a linear D4 orthotropic second gradient elastic model. J Eng Math 2017; 103(1007): 1-21. · Zbl 1390.74018 · doi:10.1007/s10665-016-9856-8
[31] Abali, BE, Müller, WH, Eremeyev, VA. Strain gradient elasticity with geometric nonlinearities and its computational evaluation. Mech Adv Mater Mod Process 2015; 1(1): 4. · doi:10.1186/s40759-015-0004-3
[32] Placidi, L, Rosi, G, Giorgio, I et al. Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials. Math Mech Solids 2014; 19(5): 555-578. · Zbl 1305.74047
[33] Rahali, Y, Giorgio, I, Ganghoffer, JF et al. Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. Int J Eng Sci 2015; 97: 148-172. · Zbl 1423.74794 · doi:10.1016/j.ijengsci.2015.10.003
[34] Andreaus, U, dell’Isola, F, Giorgio, I et al. Numerical simulations of classical problems in two-dimensional (non) linear second gradient elasticity. Int J Eng Sci 2016; 108: 34-50. · Zbl 1423.74089 · doi:10.1016/j.ijengsci.2016.08.003
[35] Yang, H, Abali, BE, Timofeev, D et al. Determination of metamaterial parameters by means of a homogenization approach based on asymptotic analysis. Continuum Mech Thermodyn 2020; 32: 1251-1270. · doi:10.1007/s00161-019-00837-4
[36] Contrafatto, L, Cuomo, M, Gazzo, S. A concrete homogenisation technique at meso-scale level accounting for damaging behaviour of cement paste and aggregates. Comput Struct 2016; 173: 1-18. · doi:10.1016/j.compstruc.2016.05.009
[37] Placidi, L, Barchiesi, E, Misra, A. A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Math Mech Complex Syst 2018; 6(2): 77-100. · Zbl 1452.74019 · doi:10.2140/memocs.2018.6.77
[38] Placidi, L, El Dhaba, AR. Semi-inverse method à la Saint-Venant for two-dimensional linear isotropic homogeneous second-gradient elasticity. Math Mech Solids 2017; 22(5): 919-937. · Zbl 1371.74105
[39] Placidi, L, Misra, A, Barchiesi, E. Two-dimensional strain gradient damage modeling: a variational approach. Z Angew Math Phys 2018; 69(3): 56. · Zbl 1393.74168 · doi:10.1007/s00033-018-0947-4
[40] Yang, Y, Misra, A. Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity. Int J Solids Struct 2012; 49(18): 2500-2514. · doi:10.1016/j.ijsolstr.2012.05.024
[41] Placidi, L, Barchiesi, E, Misra, A et al. Variational methods in continuum damage and fracture mechanics. In: Altenbach, H, Öchsner, A (eds.) Encylopedia of continuum mechanics. Berlin: Springer-Verlag, 2020. · doi:10.1007/978-3-662-55771-6_199
[42] dell’Isola, F, Seppecher, P, Placidi, L et al. Least action and virtual work principles for the formulation of generalized continuum models. In: dell’Isola, F, Steigmann, D (eds.) Discrete and continuum models for complex metamaterials. Cambridge: Cambridge University Press, 2020, 327-394. · doi:10.1017/9781316104262.010
[43] dell’Isola, F, Placidi, L. Variational principles are a powerful tool also for formulating field theories. In: dell’Isola, F, Gavrilyuk, S (eds.) Variational models and methods in solid and fluid mechanics (CISM Courses and Lectures, vol. 535). Vienna: Springer, 2011, 1-15. · Zbl 1247.70035 · doi:10.1007/978-3-7091-0983-0_1
[44] dell’Isola, F, Madeo, A, Seppecher, P. Cauchy tetrahedron argument applied to higher contact interactions. Arch Ration Mech Anal 2016; 219(3): 1305-1341. · Zbl 1395.74071 · doi:10.1007/s00205-015-0922-6
[45] dell’Isola, F, Seppecher, P, Corte, AD. The postulations á la d’Alembert and á la Cauchy for higher gradient continuum theories are equivalent: a review of existing results. Proc R Soc London, Ser A 2015; 471(2183): 20150415. · Zbl 1371.82032 · doi:10.1098/rspa.2015.0415
[46] Abali, BE, Müller, WH, dell’Isola, F. Theory and computation of higher gradient elasticity theories based on action principles. Arch Appl Mech 2017; 87: 1495-1510. · doi:10.1007/s00419-017-1266-5
[47] Spagnuolo, M, Franciosi, P, dell’Isola, F. (2020). A Green operator-based elastic modeling for two-phase pantographic-inspired bi-continuous materials. Int J Solids Struct 2020; 188: 282-308. · doi:10.1016/j.ijsolstr.2019.10.018
[48] dell’Isola, F, Lekszycki, T, Spagnuolo, M et al. Experimental methods in pantographic structures. In: dell’Isola, F, Steigmann, D (eds.) Discrete and continuum models for complex metamaterials. Cambridge: Cambridge University Press, 2020, 263. · doi:10.1017/9781316104262.008
[49] dell’Isola, F, Turco, E, Barchiesi, E. Lagrangian discrete models: applications to metamaterials. In: dell’Isola, F, Steigmann, D (eds.) Discrete and continuum models for complex metamaterials. Cambridge: Cambridge University Press, 2020, 197. · doi:10.1017/9781316104262.007
[50] dell’Isola, F, Spagnuolo, M, Barchiesi, E et al. Pantographic metamaterial: a (not so) particular case. In: dell’Isola, F, Steigmann, D (eds.) Discrete and continuum models for complex metamaterials. Cambridge: Cambridge University Press, 2020, 103. · doi:10.1017/9781316104262.004
[51] Placidi, L, dell’Isola, F, Barchiesi, E. Heuristic homogenization of Euler and pantographic beams. In: Picu, C, Ganghoffer, JF (eds.) Mechanics of fibrous materials and applications (CISM International Centre for Mechanical Sciences (Courses and Lectures), vol. 596). Cham: Springer, 2020, 123-125. · doi:10.1007/978-3-030-23846-9_3
[52] De Angelo, M, Spagnuolo, M, D’Annibale, F et al. The macroscopic behavior of pantographic sheets depends mainly on their microstructure: experimental evidence and qualitative analysis of damage in metallic specimens. Continuum Mech Thermodyn 2019; 31(4): 1181-1203. · doi:10.1007/s00161-019-00757-3
[53] Misra, A, Singh, V, Darabi, MK. Asphalt pavement rutting simulated using granular micromechanics-based rate-dependent damage-plasticity model. Int J Pavement Eng 2019; 20(9): 1012-1025. · doi:10.1080/10298436.2017.1380804
[54] Misra, A, Sarikaya, R. Computational analysis of tensile damage and failure of mineralized tissue assisted with experimental observations. Proc Inst Mech Eng H 2020; 234(3): 289-298.
[55] Placidi, L, Misra, A, Barchiesi, E. Simulation results for damage with evolving microstructure and growing strain gradient moduli. Continuum Mech Thermodyn 2019; 31(4): 1143-1163. · doi:10.1007/s00161-018-0693-z
[56] Khakalo, S, Niiranen, J. Anisotropic strain gradient thermoelasticity for cellular structures: plate models, homogenization and isogeometric analysis. J Mech Phys Solids 2020; 134: 103728. · Zbl 1481.74108 · doi:10.1016/j.jmps.2019.103728
[57] Khakalo, S, Niiranen, J. Lattice structures as thermoelastic strain gradient metamaterials: evidence from full-field simulations and applications to functionally step-wise-graded beams. Composites, Part B 2019; 177: 107224. · doi:10.1016/j.compositesb.2019.107224
[58] Turco, E, Golaszewski, M, Cazzani, A et al. Large deformations induced in planar pantographic sheets by loads applied on fibers: experimental validation of a discrete Lagrangian model. Mech Res Commun 2016; 76: 51-56. · doi:10.1016/j.mechrescom.2016.07.001
[59] Cazzani, A, Malagù, M, Turco, E. Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches. Continuum Mech Thermodyn 2016; 28(1-2): 139-156. · Zbl 1348.74190 · doi:10.1007/s00161-014-0409-y
[60] Grillanda, N, Chiozzi, A, Bondi, F et al. Numerical insights on the structural assessment of historical masonry stellar vaults: the case of Santa Maria del Monte in Cagliari. Continuum Mech Thermodyn. Epub ahead of print4 March 2019. DOI: 10.1007/s00161-019-00752-8. · doi:10.1007/s00161-019-00752-8.
[61] Cazzani, A, Stochino, F, Turco, E. An analytical assessment of finite element and isogeometric analyses of the whole spectrum of Timoshenko beams. Z Angew Math Mech 2016; 96(10): 1220-1244. · Zbl 1338.74068 · doi:10.1002/zamm.201500280
[62] Schulte, J, Dittmann, M, Eugster, SR et al. Isogeometric analysis of fiber reinforced composites using Kirchhoff-Love shell elements. Comput Methods Appl Mech Eng 2020; 362: 112845. · Zbl 1439.74093 · doi:10.1016/j.cma.2020.112845
[63] Barchiesi, E, dell’Isola, F, Hild, F et al. Two-dimensional continua capable of large elastic extension in two independent directions: asymptotic homogenization, numerical simulations and experimental evidence. Mech Res Commun 2020; 103: 103466. · doi:10.1016/j.mechrescom.2019.103466
[64] Cazzani, A, Malagù, M, Turco, E. Isogeometric analysis of plane-curved beams. Math Mech Solids 2016; 21(5): 562-577. · Zbl 1370.74084
[65] Cazzani, A, Malagù, M, Turco, E et al. Constitutive models for strongly curved beams in the frame of isogeometric analysis. Math Mech Solids 2016; 21(2): 182-209. · Zbl 1333.74051
[66] Contrafatto, L, Cuomo, M, Fazio, F. An enriched finite element for crack opening and rebar slip in reinforced concrete members. Int J Fract 2012; 178: 33-50. · doi:10.1007/s10704-012-9723-1
[67] Cuomo, M, Greco, L. Isogeometric analysis of space rods: considerations on stress locking. In: European Congress on Computational Methods in Applied Sciences and Engineering (ECOCOMAS 2012), 2012.
[68] Greco, L, Cuomo, M. B-spline interpolation of Kirchhoff-Love space rods. Comput Methods Appl Mech Eng 2013; 256: 251-269. · Zbl 1352.74153 · doi:10.1016/j.cma.2012.11.017
[69] Greco, L, Cuomo, M. An implicit G1 multi patch B-spline interpolation for Kirchhoff-Love space rod. Comput Methods Appl Mech Eng 2014; 269: 173-197. · Zbl 1296.74049 · doi:10.1016/j.cma.2013.09.018
[70] Turco, E, Aristodemo, M. A three-dimensional B-spline boundary element. Comput Methods Appl Mech Eng 1998; 155(1-2): 119-128. · Zbl 0960.74074 · doi:10.1016/S0045-7825(97)00147-3
[71] Placidi, L. A variational approach for a nonlinear 1-dimensional second gradient continuum damage model. Continuum Mech Thermodyn 2015; 27(4-5): 623. · Zbl 1341.74016 · doi:10.1007/s00161-014-0338-9
[72] Placidi, L. A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model. Continuum Mech Thermodyn 2016; 28(1-2): 119. · Zbl 1348.74062 · doi:10.1007/s00161-014-0405-2
[73] Placidi, L, Andreaus, U, Della Corte, A et al. Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Z Angew Math Phys 2015; 66(6) 3699-3725. · Zbl 1386.74018 · doi:10.1007/s00033-015-0588-9
[74] Phunpeng, V, Baiz, P. Mixed finite element formulations for strain-gradient elasticity problems using the FEniCS environment. Finite Elem Anal Des 2015; 96: 23-40. · doi:10.1016/j.finel.2014.11.002
[75] Zybell, L, Mühlich, U, Kuna, M et al. A three-dimensional finite element for gradient elasticity based on a mixed-type formulation. Comput Mater Sci 2012; 52(1): 268-273. · Zbl 1278.74145 · doi:10.1016/j.commatsci.2011.02.026
[76] Reiher, JC, Giorgio, I, Bertram, A. Finite-element analysis of polyhedra under point and line forces in second-strain gradient elasticity. J Eng Mech 2017; 143(2): 04016112. · doi:10.1061/(ASCE)EM.1943-7889.0001184
[77] Scerrato, D, Zhurba Eremeeva, IA, Lekszycki, T et al. On the effect of shear stiffness on the plane deformation of linear second gradient pantographic sheets. Z Angew Math Mech 2016; 96(11): 1268-1279. · Zbl 07775122 · doi:10.1002/zamm.201600066
[78] Erdogan, F, Sih, GC. On the crack extension in plates under plane loading and transverse shear. J Basic Eng 1963; 85(4): 519-525. · doi:10.1115/1.3656897
[79] Sih, GC. Handbook of stress-intensity factors: stress-intensity factor solutions and formulas for reference. Bethlehem, PA: Lehigh University, 1973.
[80] Alibert, J-J, Seppecher, P, Dell’Isola, F. Truss modular beams with deformation energy depending on higher displacement gradients. Math Mech Solids 2003; 8(1): 51-73. · Zbl 1039.74028
[81] dell’Isola, F, Seppecher, P. Edge contact forces and quasi-balanced power. Meccanica 1997; 32(1): 33-52. · Zbl 0877.73055 · doi:10.1023/A:1004214032721
[82] Miehe, C, Schaenzel, L-M, Ulmer, H. Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids. Comput Methods Appl Mech Eng 2015; 294: 449-485. · Zbl 1423.74838 · doi:10.1016/j.cma.2014.11.016
[83] Nagaraja, S, Elhaddad, M, Ambati, M et al. Phase-field modeling of brittle fracture with multi-level \(\operatorname{hp} \)-FEM and the finite cell method. Comput Mech 2019; 6: 1283-1300. · Zbl 1465.74152 · doi:10.1007/s00466-018-1649-7
[84] Miehe, C, Hofacker, M, Welschinger, F. A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 2010; 199(45-48): 2765-2778. · Zbl 1231.74022 · doi:10.1016/j.cma.2010.04.011
[85] Huynh, G, Zhuang, X, Nguyen-Xuan, H. Implementation aspects of a phase-field approach for brittle fracture. Front Struct Civ Eng 2019; 13(2): 417-428. · doi:10.1007/s11709-018-0477-3
[86] Chakraborty, P, Sabharwall, P, Carroll, MC. A phase-field approach to model multi-axial and microstructure dependent fracture in nuclear grade graphite. J Nucl Mater 2016; 475: 200-208. · doi:10.1016/j.jnucmat.2016.04.006
[87] Hentati, H, Dhahri, M, Dammak, F. A phase-field model of quasistatic and dynamic brittle fracture using a staggered algorithm. J Mech Mater Struct 2016; 11(3): 309-327. · doi:10.2140/jomms.2016.11.309
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.