×

Existence and uniqueness of weak solutions to the singular kernels coagulation equation with collisional breakage. (English) Zbl 1466.45007

Summary: The continuous coagulation equation with collisional breakage explains the dynamics of particle growth when particles experience binary collisions to form either a single particle via coalescence or two/more particles via breakup with possible transfer of matter. Each of these processes may take place with a suitably assigned probability depending on the volume of particles participating in the collision. In this article, global weak solutions to the continuous coagulation equation with collisional breakage are formulated to the collision kernels and distribution functions admitting a singularity near the origin. In particular, the proof relies on a classical weak \(L^1\) compactness method applied to suitably chosen approximate equations. The question of uniqueness is also contemplated under more restricted class of collision kernels.

MSC:

45K05 Integro-partial differential equations
82B24 Interface problems; diffusion-limited aggregation arising in equilibrium statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aldous, DJ, Deterministic and stochastic model for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists, Bernouli, 5, 3-48 (1990) · Zbl 0930.60096 · doi:10.2307/3318611
[2] Ash, RB, Measure, Integration and Functional Analysis (1972), New York: Academic Press, New York · Zbl 0249.28001
[3] Barik, PK, Existence of mass-conserving weak solutions to the singular coagulation equation with multiple fragmentation, Evol. Equ. Control Theory, 9, 431-446 (2020) · Zbl 1463.45043 · doi:10.3934/eect.2020012
[4] Barik, PK; Giri, AK, A note on mass-conserving solutions to the coagulation and fragmentation equation by using non-conservative approximation, Kinet. Relat. Models, 11, 1125-1138 (2018) · Zbl 1405.35239 · doi:10.3934/krm.2018043
[5] Barik, PK; Giri, AK, Weak solutions to the continuous coagulation model with collisional breakage, Discrete Contin. Dyn. Syst., 40, 6115-6133 (2020) · Zbl 1474.45060 · doi:10.3934/dcds.2020272
[6] Barik, P.K., Giri, A.K., Laurençot, Ph.: Mass-conserving solutions to the Smoluchowski coagulation equation with singular kernel. Proc. Roy. Soc. Edinburgh Sec. A 150, 6115-6133 (2020) · Zbl 1474.45060
[7] Brown, PS, Structural stability of the coalescence/breakage equations, J. Atmosph. Sci., 52, 3857-3865 (1995) · doi:10.1175/1520-0469(1995)052<3857:SSOTCE>2.0.CO;2
[8] Camejo, C.C.: The Singular Coagulation and Coagulation-Fragmentation Equation, PhD thesis (2013)
[9] Camejo, CC; Gröpler, R.; Warnecke, G., Regular solutions to the coagulation equations with singular kernels, Math. Methods Appl. Sci., 38, 2171-2184 (2015) · Zbl 1323.45006 · doi:10.1002/mma.3211
[10] Camejo, CC; Warnecke, G., The singular kernel coagulation equation with multifragmentation, Math. Methods Appl. Sci., 38, 2953-2973 (2015) · Zbl 1334.45012 · doi:10.1002/mma.3272
[11] Cheng, Z.; Redner, S., Kinetics of fragmentation, J. Phys. A. Math. Gen., 23, 1233-1258 (1990) · doi:10.1088/0305-4470/23/7/028
[12] Cheng, Z.; Redner, S., Scaling theory of fragmentation, Phys. Rev. Lett., 60, 2450-2453 (1988) · doi:10.1103/PhysRevLett.60.2450
[13] Ernst, MH; Pagonabarraga, I., The non-linear fragmentation equation, J. Phys. A. Math. Theor., 40, F331-F337 (2007) · Zbl 1189.82068 · doi:10.1088/1751-8113/40/17/F03
[14] Escobedo, M., Laurençot, Ph., Mischler, S.: On a kinetic equation for coalescing particles. Commun. Math. Phys. 246, 237-267 (2004) · Zbl 1126.82036
[15] Escobedo, M., Laurençot, Ph., Mischler, S., Perthame, B.: Gelation and mass conservation in coagulation-fragmentation models. J. Diff. Eqs. 195, 143-174 (2003) · Zbl 1133.82316
[16] Fournier, N., Laurençot, Ph.: Existence of self-similar solutions to Smoluchowski’s coagulation equation. Commun. Math. Phys. 256, 589-609 (2005) · Zbl 1084.82006
[17] Kostoglou, M.; Karabelas, AJ, A study of the nonlinear breakage equation: analytical and asymptotic solutions, J. Phys. A. Math. Gen., 33, 1221-1232 (2000) · Zbl 0969.82026 · doi:10.1088/0305-4470/33/6/309
[18] Laurençot, Ph.: On a class of continuous coagulation-fragmentation equations. J. Diff. Equ. 167, 245-274 (2000) · Zbl 0978.35083
[19] Laurençot, Ph., Mischler, S.: The continuous coagulation-fragmentation equations with diffusion. Arch. Rational Mech. Anal. 162, 45-99 (2002) · Zbl 0997.45005
[20] Laurençot, Ph., Wrzosek, D.: The discrete coagulation equations with collisional breakage. J. Stat. Phys. 104, 193-220 (2001) · Zbl 1126.82320
[21] Norris, JR, Smoluchowski’s coagulation equation: uniqueness, non-uniqueness and hydrodynamic limit for the stochastic coalescent, Ann. Appl. Probab., 9, 78-109 (1999) · Zbl 0944.60082 · doi:10.1214/aoap/1029962598
[22] Safronov, V. S.: Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets (Israel Program for Scientific Translations Ltd. Jerusalem), (1972)
[23] Stewart, IW, A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels, Math. Methods Appl. Sci., 11, 627-648 (1989) · Zbl 0683.45006 · doi:10.1002/mma.1670110505
[24] Stewart, IW, A uniqueness theorem for the coagulation-fragmentation equation, Math. Proc. Comb. Phil. Soc., 107, 573-578 (1990) · Zbl 0708.45010 · doi:10.1017/S0305004100068821
[25] Vigil, RD; Vermeersch, I.; Fox, RO, Destructive aggregation: Aggregation with collision-induced breakage, Colloid Inter. Sci., 302, 149-158 (2006) · doi:10.1016/j.jcis.2006.05.066
[26] Walker, C., Coalescence and breakage processes, Math. Methods Appl. Sci., 25, 729-748 (2002) · Zbl 1074.82534 · doi:10.1002/mma.310
[27] Wilkins, D., A geometrical interpretation of the coagulation equation, J. Phys. A, 15, 1175-1178 (1992) · doi:10.1088/0305-4470/15/4/020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.