×

Two efficient and reliable a posteriori error estimates for the local discontinuous Galerkin method applied to linear elliptic problems on Cartesian grids. (English) Zbl 1473.65286

Summary: In this paper, we derive two a posteriori error estimates for the local discontinuous Galerkin (LDG) method applied to linear second-order elliptic problems on Cartesian grids. We first prove that the gradient of the LDG solution is superconvergent with order \(p+1\) towards the gradient of Gauss-Radau projection of the exact solution, when tensor product polynomials of degree at most \(p\) are used. Then, we prove that the gradient of the actual error can be split into two parts. The components of the significant part can be given in terms of \((p+1)\)-degree Radau polynomials. We use these results to construct a reliable and efficient residual-type a posteriori error estimates. We further develop a postprocessing gradient recovery scheme for the LDG solution. This recovered gradient superconverges to the gradient of the true solution. The order of convergence is proved to be \(p+1\). We use our gradient recovery result to develop a robust recovery-type a posteriori error estimator for the gradient approximation which is based on an enhanced recovery technique. We prove that the proposed residual-type and recovery-type a posteriori error estimates converge to the true errors in the \(L^2\)-norm under mesh refinement. The order of convergence is proved to be \(p+1\). Moreover, the proposed estimators are proved to be asymptotically exact. Finally, we present a local adaptive mesh refinement procedure that makes use of our local and global a posteriori error estimates. Our proofs are valid for arbitrary regular meshes and for \(P^p\) polynomials with \(p\geq 1\). We provide several numerical examples illustrating the effectiveness of our procedures.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abramowitz, M.; Stegun, IA, Handbook of Mathematical Functions (1965), New York: Dover, New York · Zbl 0171.38503
[2] Adjerid, S.; Baccouch, M., The discontinuous Galerkin method for two-dimensional hyperbolic problems. Part II: a posteriori error estimation, J. Sci. Comput., 38, 15-49 (2009) · Zbl 1203.65241 · doi:10.1007/s10915-008-9222-8
[3] Adjerid, S.; Baccouch, M., A superconvergent local discontinuous Galerkin method for elliptic problems, J. Sci. Comput., 52, 113-152 (2012) · Zbl 1255.65207 · doi:10.1007/s10915-011-9537-8
[4] Adjerid, S.; Baccouch, M.; Feng, X.; Karakashian, O.; Xing, Y., Adaptivity and error estimation for discontinuous Galerkin methods, Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations, vol. 157 The IMA Volumes in Mathematics and its Applications, 63-96 (2014), Switzerland: Springer, Switzerland · Zbl 1282.65109
[5] Adjerid, S.; Chaabane, N., An improved superconvergence error estimate for the LDG method, Appl. Numer. Math., 98, 122-136 (2015) · Zbl 1329.65267 · doi:10.1016/j.apnum.2015.07.005
[6] Adjerid, S.; Massey, TC, A posteriori discontinuous finite element error estimation for two-dimensional hyperbolic problems, Comput. Methods Appl. Mech. Eng., 191, 5877-5897 (2002) · Zbl 1062.65091 · doi:10.1016/S0045-7825(02)00502-9
[7] Ainsworth, M.: A synthesis of a posteriori error estimation techniques for conforming, nonconforming and discontinuous Galerkin finite element methods. In: Recent Advances in Adaptive Computation, Contemp. Math. 383, AMS, pp. 1-14 (2005) · Zbl 1098.65106
[8] Ainsworth, M., A Posteriori error estimation for discontinuous Galerkin finite element approximation, SIAM J. Numer. Anal., 45, 4, 1777-1798 (2007) · Zbl 1151.65083 · doi:10.1137/060665993
[9] Ainsworth, M., A framework for obtaining guaranteed error bounds for finite element approximations, J. Comput. Appl. Math., 234, 9, 2618-2632 (2010) · Zbl 1191.65144 · doi:10.1016/j.cam.2010.01.037
[10] Ainsworth, M.; Allendes, A.; Barrenechea, GR; Rankin, R., On the adaptive selection of the parameter in stabilized finite element approximations, SIAM J. Numer. Anal., 51, 3, 1585-1609 (2013) · Zbl 1276.65076 · doi:10.1137/110837796
[11] Ainsworth, M.; Oden, JT, A Posteriori Error Estimation in Finite Element Analysis (2000), New York: Wiley, New York · Zbl 1008.65076 · doi:10.1002/9781118032824
[12] Arnold, DN; Brezzi, F.; Cockburn, B.; Marini, LD, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 1749-1779 (2002) · Zbl 1008.65080 · doi:10.1137/S0036142901384162
[13] Baccouch, M., A superconvergent local discontinuous Galerkin method for the second-order wave equation on Cartesian grids, Comput. Math. Appl., 68, 1250-1278 (2014) · Zbl 1367.65140 · doi:10.1016/j.camwa.2014.08.023
[14] Baccouch, M., Superconvergence and a posteriori error estimates of the DG method for scalar hyperbolic problems on Cartesian grids, Appl. Math. Comput., 265, 144-162 (2015) · Zbl 1410.65443
[15] Baccouch, M., A Posteriori error analysis of the discontinuous Galerkin method for two-dimensional linear hyperbolic conservation laws on Cartesian grids, J. Sci. Comput., 68, 3, 945-974 (2016) · Zbl 1410.65352 · doi:10.1007/s10915-016-0166-0
[16] Baccouch, M., A posteriori error estimator based on derivative recovery for the discontinuous Galerkin method for nonlinear hyperbolic conservation laws on Cartesian grids, Numer. Methods Partial Differ. Equ., 33, 4, 1224-1265 (2017) · Zbl 1376.65121 · doi:10.1002/num.22141
[17] Baccouch, M., A recovery-based error estimator for the discontinuous Galerkin method for transient linear hyperbolic conservation laws on Cartesian grids, Int. J. Comput. Methods, 14, 6, 1750062 (2017) · Zbl 1404.65158 · doi:10.1142/S0219876217500621
[18] Baccouch, M., Superconvergence of the local discontinuous Galerkin method for the sine-Gordon equation on Cartesian grids, Appl. Numer. Math., 113, 124-155 (2017) · Zbl 1355.65114 · doi:10.1016/j.apnum.2016.11.007
[19] Baccouch, M., Optimal error estimates of the local discontinuous Galerkin method for the two-dimensional sine-Gordon equation on Cartesian grids, Int. J. Numer. Anal. Model., 16, 436-462 (2019) · Zbl 1427.65214
[20] Baccouch, M.; Adjerid, S., Discontinuous Galerkin error estimation for hyperbolic problems on unstructured triangular meshes, Comput. Methods Appl. Mech. Eng., 200, 162-177 (2010) · Zbl 1225.76190 · doi:10.1016/j.cma.2010.08.002
[21] Baccouch, M.; Adjerid, S., A posteriori local discontinuous Galerkin error estimation for two-dimensional convection-diffusion problems, J. Sci. Comput., 62, 399-430 (2014) · Zbl 1326.65146 · doi:10.1007/s10915-014-9861-x
[22] Bangerth, W.; Rannacher, R., Adaptive Finite Element Methods for Differential Equations (2003), Berlin: Birkhäuser Verlag, Berlin · Zbl 1020.65058 · doi:10.1007/978-3-0348-7605-6
[23] Brezzi, F.; Cockburn, B.; Karniadakis, GE; Shu, CW, DG methods for elliptic problems, Proceedings of International Symposium on Discontinuous Galerkin Methods Theory, Computation and Applications (2000), Berlin: Springer, Berlin
[24] Bustinza, R.; Gatica, G.; Cockburn, B., An A Posteriori error estimate for the local discontinuous Galerkin method applied to linear and nonlinear diffusion problems, J. Sci. Comput., 22, 147-185 (2005) · Zbl 1065.76133 · doi:10.1007/s10915-004-4137-5
[25] Castillo, P., An A Posteriori error estimate for the local discontinuous Galerkin method, J. Sci. Comput., 22, 187-204 (2005) · Zbl 1082.65111 · doi:10.1007/s10915-004-4151-7
[26] Castillo, P., A review of the local discontinuous Galerkin (LDG) method applied to elliptic problems, Appl. Numer. Math., 56, 1307-1313 (2006) · Zbl 1100.65100 · doi:10.1016/j.apnum.2006.03.016
[27] Castillo, P.; Cockburn, B.; Perugia, I.; Schötzau, D., An a priori error analysis of the local discontinuous Galerkin method for elliptic problems, SIAM J. Numer. Anal., 38, 1676-1706 (2000) · Zbl 0987.65111 · doi:10.1137/S0036142900371003
[28] Castillo, P.; Cockburn, B.; Schötzau, D.; Schwab, C., Optimal a priori error estimates for the \(hp\)-version of the local discontinuous Galerkin method for convection-diffusion problems, Math. Comput., 71, 455-478 (2002) · Zbl 0997.65111 · doi:10.1090/S0025-5718-01-01317-5
[29] Ciarlet, PG, The Finite Element Method for Elliptic Problems (1978), Amsterdam: North-Holland Pub. Co., Amsterdam · Zbl 0383.65058
[30] Cockburn, B.; Kanschat, G.; Perugia, I.; Schötzau, D., Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids, SIAM J. Numer. Anal., 39, 264-285 (2001) · Zbl 1041.65080 · doi:10.1137/S0036142900371544
[31] Cockburn, B.; Kanschat, G.; Schötzau, D., A locally conservative LDG method for the incompressible Navier-Stokes equations, Math. Comput., 74, 1067-1095 (2004) · Zbl 1069.76029 · doi:10.1090/S0025-5718-04-01718-1
[32] Cockburn, B.; Kanschat, G.; Schötzau, D., The local discontinuous Galerkin method for linearized incompressible fluid flow: a review, Comput. Fluids, 34, 4-5, 491-506 (2005) · Zbl 1138.76382 · doi:10.1016/j.compfluid.2003.08.005
[33] Cockburn, B., Karniadakis, G.E., Shu, C.W.: Discontinuous Galerkin Methods Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering, vol. 11. Springer, Berlin (2000) · Zbl 0935.00043
[34] Cockburn, B.; Shu, CW, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35, 2440-2463 (1998) · Zbl 0927.65118 · doi:10.1137/S0036142997316712
[35] Dong, B.; Shu, C-W, Analysis of a local discontinuous Galerkin method for linear time-dependent fourth-order problems, SIAM J. Numer. Anal., 47, 3240-3268 (2009) · Zbl 1204.65123 · doi:10.1137/080737472
[36] Eriksson, K.; Estep, D.; Hansbo, P.; Johnson, C., Computational Differential Equations (1995), Cambridge: Cambridge University Press, Cambridge · Zbl 0843.65057
[37] Gudi, T.; Nataraj, N.; Pani, A., An \(hp\)-local discontinuous Galerkin method for some quasilinear elliptic boundary value problems of nonmonotone type, Math. Comput., 77, 731-756 (2008) · Zbl 1147.65093 · doi:10.1090/S0025-5718-07-02047-9
[38] Karakashian, OA; Pascal, F., A Posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems, SIAM J. Numer. Anal., 41, 6, 2374-2399 (2003) · Zbl 1058.65120 · doi:10.1137/S0036142902405217
[39] Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation, Tech. Rep. LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos (1991)
[40] Rivière, B., Discontinuous Galerkin methods for solving elliptic and parabolic equations: theory and implementation (2008), Philadelphia, PA: SIAM, Society for Industrial and Applied Mathematics, Philadelphia, PA · Zbl 1153.65112 · doi:10.1137/1.9780898717440
[41] Rivière, B.; Wheeler, M.; Girault, V., Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems, Part I Comput. Geosci., 3, 337-360 (1999) · Zbl 0951.65108 · doi:10.1023/A:1011591328604
[42] Rivière, B.; Wheeler, M.; Girault, V., A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems, SIAM J. Numer. Anal., 39, 902-931 (2001) · Zbl 1010.65045 · doi:10.1137/S003614290037174X
[43] Verfürth, R., A Review of a Posteriori Error Estimation and Adaptive Mesh Refinement Techniques. Advances in Numerical Mathematics (1996), Hoboken: Wiley, Hoboken · Zbl 0853.65108
[44] Xu, Y.; Shu, C-W, Optimal error estimates of the semi-discrete local discontinuous Galerkin methods for high order wave equations, SIAM J. Numer. Anal., 50, 79-104 (2012) · Zbl 1247.65121 · doi:10.1137/11082258X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.