×

Computational scheme for the time-fractional reaction-diffusion Brusselator model. (English) Zbl 1472.65133

Summary: In this work, we present an adaptation of a new look of the fractional Maclaurin series to study the time-fractional reaction-diffusion Brusselator system. Also, we give a description of implementing the suggested numerical scheme to provide a supportive approximation solution to the time-fractional Brusselator. We study the physical shape of the depicted solution upon changing the order of the fractional derivative and concluding some results. The analysis conducted in this work is supported by 2D-3D plots. Finally, we discuss other numerical techniques that has been used in obtaining simulated solutions for the fractional Brusselator model.

MSC:

65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
26A33 Fractional derivatives and integrals
35F25 Initial value problems for nonlinear first-order PDEs
35C10 Series solutions to PDEs
80A32 Chemically reacting flows
35Q79 PDEs in connection with classical thermodynamics and heat transfer
35R11 Fractional partial differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kumar, S.; Jiwari, R.; Mittal, RC, Numerical simulation for computational modelling of reaction-diffusion Brusselator model arising in chemical processes, J. Math. Chem., 57, 149-179 (2019) · Zbl 1406.92803
[2] Alqahtani, AM, Numerical simulation to study the pattern formation of reaction-diffusion Brusselator model arising in triple collision and enzymatic, J. Math. Chem., 56, 1543-1566 (2018) · Zbl 1394.92153
[3] Turing, AM, The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. Ser. B, 237, 37-72 (1952) · Zbl 1403.92034
[4] Twizell, EH; Gumel, AB; Cao, Q., A second-order scheme for the Brusselator’ reaction-diffusion system, J. Math. Chem., 26, 297-316 (1999) · Zbl 1016.92049
[5] Adomian, G., The diffusion-Brusselator equation, Comput. Math. Appl., 29, 5, 1-3 (1995) · Zbl 0827.35056
[6] Wazwaz, AM, The decomposition method applied to systems of partial differential equations and to the reaction-diffusion Brusselator model, Appl. Math. Comput., 110, 251-264 (2000) · Zbl 1023.65109
[7] Siraj-ul-Islam, AA; Haq, S., A computational modeling of the behavior of the two-dimensional reaction-diffusion Brusselator system, Appl. Math. Model., 34, 3896-3909 (2010) · Zbl 1201.65185
[8] Kumar, S.; Khan, Y.; Yildirim, A., A mathematical modeling arising in the chemical systems and its approximate numerical solution, Asia-Pac. J. Chem. Eng., 7, 835-840 (2012)
[9] Verwer, JG; Hundsdorfer, WH; Sommeijer, BP, Convergence properties of the Runge-Kutta-Chebyshev Method, Numer. Math., 57, 157-178 (1990) · Zbl 0697.65072
[10] Dehghan, M.; Abbaszadeh, M., Variational multiscale element free Galerkin (VMEFG) and local discontinuous Galerkin (LDG) methods for solving two-dimensional Brusselator reaction-diffusion system with and without cross-diffusion, Comput. Methods Appl. Mech. Eng., 300, 770-797 (2016) · Zbl 1425.65108
[11] Mittal, RC; Jiwari, R., Numerical study of two-dimensional reaction-diffusion Brusselator system, Appl. Math. Comput., 217, 12, 5404-5415 (2011) · Zbl 1209.65102
[12] Jiwari, R.; Yuan, J., A computational modeling of two dimensional reaction-diffusion Brusselator system arising in chemical processes, J. Math. Chem., 52, 1535-1551 (2014) · Zbl 1296.92252
[13] Dehghan, M.; Manafian, J.; Saadatmandi, A., Solving nonlinear fractional partial differential equations using the homotopy analysis method, Numer. Methods Partial Differ. Equ., 26, 448-479 (2010) · Zbl 1185.65187
[14] Ganjiani, M., Solution of nonlinear fractional differential equations using homotopy analysis method, Appl. Math. Model., 34, 1634-1641 (2010) · Zbl 1193.65147
[15] He, JH, Homotopy perturbation method: a new nonlinear analytical technique, Appl. Math. Comput., 135, 73-79 (2003) · Zbl 1030.34013
[16] Pandey, RK; Singh, OP; Baranwal, VK, An analytic algorithm for the space-time fractional advection-dispersion equation, Comput. Phys. Commun., 182, 1134-1144 (2011) · Zbl 1217.65196
[17] Odibat, Z.; Momani, S., Application of variational iteration method to nonlinear differential equations of fractional order, Int. J. Nonlinear Sci. Numer. Simul., 7, 27-34 (2006) · Zbl 1401.65087
[18] Jafari, J.; Nazari, M.; Baleanu, D.; Khalique, CM, A new approach for solving a system of fractional partial differential equations, Comput. Math. Appl., 66, 838-843 (2013) · Zbl 1381.35221
[19] Alquran, M.; Jaradat, I., Delay-asymptotic solutions for the time-fractional delay-type wave equation, Phys. A Stat. Mech. Appl., 527, 121275 (2019)
[20] Ali, M.; Alquran, M.; Jaradat, I., Asymptotic-sequentially solution style for the generalized Caputo time-fractional Newell-Whitehead-Segel system, Adv. Differ. Equ., 2019, 70 (2019) · Zbl 1458.35442
[21] Alquran, M., Analytical solution of time-fractional two-component evolutionary system of order 2 by residual power series method, J. Appl. Anal. Comput., 5, 4, 589-599 (2015) · Zbl 1447.35111
[22] Jaradat, HM; Al-Shara, S.; Khan, QJA; Alquran, M.; Al-Khaled, K., Analytical solution of time-fractional Drinfeld-Sokolov-Wilson system using residual power series method, IAENG Int. J. Appl. Math., 46, 1, 64-70 (2016)
[23] Jaradat, HM; Jaradat, I.; Alquran, M.; Jaradat, MMM; Mustafa, Z.; Abohassan, K.; Abdelkarim, R., Approximate solutions to the generalized time-fractional Ito system, Ital. J. Pure Appl. Math., 37, 699-710 (2017) · Zbl 1398.35270
[24] Ray, SS; Bera, RK, Analytical solution of a fractional diffusion equation by Adomian decomposition method, Appl. Math. Comput., 174, 329-336 (2006) · Zbl 1089.65108
[25] Jaradat, I.; Al-Dolat, M.; Al-Zoubi, K.; Alquran, M., Theory and applications of a more general form for fractional power series expansion, Chaos Solitons Fract., 108, 107-110 (2018) · Zbl 1390.26010
[26] Jaradat, I.; Alquran, M.; Al-Dolat, M., Analytic solution of homogeneous time-invariant fractional IVP, Adv. Differ. Equ., 2018, 143 (2018) · Zbl 1446.35248
[27] Jaradat, I.; Alquran, M.; Abdel-Muhsen, R., An analytical framework of 2D diffusion, wave-like, telegraph, and Burgers’ models with twofold Caputo derivatives ordering, Nonlinear Dyn., 93, 4, 1911-1922 (2018) · Zbl 1400.35220
[28] Alquran, M.; Al-Khaled, K.; Sivasundaram, S.; Jaradat, HM, Mathematical and numerical study of existence of bifurcations of the generalized fractional Burgers-Huxley equation, Nonlinear Stud., 24, 1, 235-244 (2017) · Zbl 1362.35036
[29] Jaradat, I.; Alquran, M.; Katatbeh, Q.; Yousef, F.; Momani, S.; Baleanu, D., An avant-garde handling of temporal-spatial fractional physical models, Int. J. Nonlinear Sci. Numer. Simul., 21, 2, 183-194 (2020) · Zbl 07201332
[30] Ali, M.; Alquran, M.; Jaradat, I.; Abu, AN; Baleanu, D., Dynamics of integer-fractional time-derivative for the new two-mode Kuramoto-Sivashinsky model, Rom. Rep. Phys., 72, 1, 103 (2020)
[31] Alquran, M.; Jaradat, I.; Momani, S.; Baleanu, D., Chaotic and solitonic solutions for a new time-fractional two-mode Korteweg-de Vries equation, Rom. Rep. Phys., 72, 3, 117 (2020)
[32] Abu, II; Alquran, M.; Jaradat, I.; Noorani, MSM; Momani, S.; Baleanu, D., Numerical investigations on the physical dynamics of the coupled fractional Boussinesq-Burgers system, Rom. J. Phys., 65, 5-6, 111 (2020)
[33] Alquran, M.; Jaradat, I.; Abdel-Muhsen, R., Embedding \((3+1)\)-dimensional diffusion, telegraph, and Burgers’ equations into fractal 2D and 3D spaces: an analytical study, J. King Saud Univ. Sci., 32, 1, 349-355 (2020)
[34] Yousef, F.; Alquran, M.; Jaradat, I.; Momani, S.; Baleanu, D., Ternary-fractional differential transform schema: theory and application, Adv. Differ. Equ., 2019, 197 (2019) · Zbl 1459.35387
[35] Yousef, F.; Alquran, M.; Jaradat, I.; Momani, S.; Baleanu, D., New fractional analytical study of three-dimensional evolution equation equipped with three memory indices, J. Comput. Nonlinear Dyn., 14, 11, 111008 (2019)
[36] El-Ajou, A.; Abu, AO; Al-Smadi, M., A general form of the generalized Taylor’s formula with some applications, Appl. Math. Comput., 256, 851-859 (2015) · Zbl 1338.40007
[37] Komashynska, I.; Al-Smadi, M.; Abu, AO; Momani, S., An efficient analytical method for solving singular initial value problems of nonlinear systems, Appl. Math. Inf. Sci., 10, 2, 647-656 (2016)
[38] Anber, A.; Dahmani, Z., Solutions of the reaction-diffusion Brusselator with fractional derivatives, J. Interdiscip. Math., 17, 5-6, 451-460 (2014)
[39] Aslan, I., Analytic investigation of a reaction-diffusion Brusselator model with the time-space fractional derivative, Int. J. Nonlinear Sci. Numer. Simul., 15, 2, 149-155 (2014) · Zbl 1401.35172
[40] Alkhalaf, S., Third-order approximate solution of chemical reaction-diffusion Brusselator system using optimal homotopy asymptotic method, Adv. Math. Phys., 2017, 3895701 (2017) · Zbl 1404.65211
[41] Singh, J.; Rashidi, MM; Kumar, D.; Swroop, R., A fractional model of a dynamical Brusselator reaction-diffusion system arising in triple collision and enzymatic reactions, Nonlinear Eng., 5, 4, 277-285 (2016)
[42] Sagheer, A.; Zidan, M.; Abdelsamea, MM, A novel autonomous perceptron model for pattern classification applications, Entropy, 21, 8, 763 (2019)
[43] Zidan, M.; Abdel-Aty, AH; El-shafei, M.; Feraig, M.; Al-Sbou, Y.; Hicheh, EH; Abdel-Aty, M., Quantum classification algorithm based on competitive learning neural network and entanglement measure, Appl. Sci., 9, 7, 1277 (2019)
[44] Abdel-Aty, AH; Kadry, H.; Zidan, M.; Al-Sbou, Y.; Zanaty, EA; Abdel-Aty, M., A quantum classification algorithm for classification incomplete patterns based on entanglement measure, J. Intell. Fuzzy Syst., 38, 3, 2809-2816 (2020)
[45] Zidan, M.; Abdel-Aty, AH; Nguyen, DM; Mohamed, ASA; Al-Sbou, Y.; Eleuch, H.; Abdel-Aty, M., A quantum algorithm based on entanglement measure for classifying multivariate function into novel hidden classes, Results Phys., 15, 102549 (2019)
[46] Abdalla, MS; Hassan, SS; Abdel-Aty, M., Entropic uncertainty in the Jaynes-Cummings model in presence of a second harmonic generation, Opt. Commun., 244, 1-6, 431-443 (2005)
[47] Abdel-Aty, M.; Abdel-Khalek, S.; Obada, A-SF, Pancharatnam phase of two-mode optical fields with Kerr nonlinearity, Opt. Rev., 7, 6, 499-504 (2000)
[48] El-Shahat, TM; Abdel-Khalek, S.; Abdel-Aty, M.; Obada, A-SF, Entropy squeezing of a degenerate two-photon process with a nonlinear medium, J. Mod. Opt., 50, 13, 2013-2030 (2003) · Zbl 1106.81328
[49] Abdel-Aty, M.; Abdalla, MS; Obada, A-SF, Entropy and phase properties of isotropic coupled oscillators interacting with a single atom: one- and two-photon processes, J. Opt. B Quantum Semiclass. Opt., 4, 3, S133-S141 (2002)
[50] Zidan, M.; Abdel-Aty, AH; El-Sadek, A.; Zanaty, EA; Abdel-Aty, M., Low-cost autonomous perceptron neural network inspired by quantum computation, AIP Conf. Proc., 1905, 1, 020005 (2017)
[51] Abdel-Aty, M.; Abdalla, MS; Obada, ASF, Uncertainty relation and information entropy of a time-dependent bimodal two-level system, J. Phys. B Atomic Mol. Opt. Phys., 35, 23, 4773-4786 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.