×

Droplet motion and oscillation on contrasting micro-striated surfaces. (English) Zbl 1486.76095

Summary: Spontaneous motion of liquid droplets can occur on hydrophobic, micro-structured, solid surfaces comprising a structural gradient. In this study, we examine such motion experimentally and explain our observations by invoking variable droplet-surface interactions (both actuation and resistance forces) arising from the structural gradient. The oscillatory motion of the droplet constitutes an integral aspect of the behaviour and this is incorporated into the overall modelling. The theoretical model features a truncated spheroid for the drop shape (flattened in the region of solid contact) coupled with the oscillatory and alternate leading and trailing motion of the contact line. Results from the model and experiments provide good qualitative and quantitative agreement. The component of the vertical oscillation is found to help overcome wetting hysteresis and actuate the motion, this being a key element for the completeness of the model.

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows
76T30 Three or more component flows
76-05 Experimental work for problems pertaining to fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bartolo, D., Josserand, C. & Bonn, D.2005Retraction dynamics of aquous drops upon impact on nonwetting surfaces. J. Fluid Mech.545, 329-338. · Zbl 1085.76564
[2] Becker, E., Hiller, W. & Kowalewski, T.1991Experimental and theoretical investigation of large-amplitude oscillations of liquid droplets. J. Fluid Mech.231, 189-210. · Zbl 0728.76114
[3] Blossey, R.2003Self-cleaning surfaces-virtual realities. Nat. Mater.2 (5), 301-306.
[4] Brunet, P., Eggers, J. & Deegan, R.2007Vibration-induced climbing of drops. Phys. Rev. Lett.99 (14), 144501. · Zbl 1139.76301
[5] Cassie, A. & Baxter, S.1944Wettability of porous surfaces. Trans. Far. Soc.40, 546-551.
[6] Chaudhury, M.K. & Whitesides, G.M.1992How to make water run uphill. Science256 (5063), 1539-1541.
[7] Chevy, F., Chepelianskii, A., Quéré, D. & Raphaël, E.2012Liquid hertz contact: softness of weakly deformed drops on non-wetting substrates. Europhys. Lett.100 (5), 54002.
[8] Chiou, P.Y., Chang, Z. & Wu, M.C.2008Droplet manipulation with light on optoelectrowetting device. J. Microelectromech. Syst.17 (1), 133-138.
[9] Courty, S., Lagubeau, G. & Tixier, T.2006Oscillating droplets by decomposition on the spherical harmonics basis. Phys. Rev. E73 (4), 045301.
[10] Daniel, S., Chaudhury, M.K. & Chen, J.C.2001Fast drop movements resulting from the phase change on a gradient surface. Science291 (5504), 633-636.
[11] De Angelis, F., Gentile, F., Mecarini, F., Das, G., Moretti, M., Candeloro, P., Coluccio, M., Cojoc, G., Accardo, A. & Liberale, C., et al.2011Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing sers structures. Nat. Photonics5 (11), 682-687.
[12] Dong, Y., Holmes, H.R. & Böhringer, K.F.2017Converting vertical vibration of anisotropic ratchet conveyors into horizontal droplet motion. Langmuir33 (40), 10745-10752.
[13] Duncombe, T.A., Erdem, E.Y., Shastry, A., Baskaran, R. & Böhringer, K.F.2012Controlling liquid drops with texture ratchets. Adv. Mater.24 (12), 1545-1550.
[14] Gordillo, J.M., Riboux, G. & Quintero, E.S.2019A theory on the spreading of impacting droplets. J. Fluid Mech.866, 298-315. · Zbl 1415.76633
[15] Harris, J.W. & Stöcker, H.1998Handbook of Mathematics and Computational Science. Springer Science & Business Media. · Zbl 0962.00507
[16] He, B. & Lee, J.2003 Dynamic wettability switching by surface roughness effect. In The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE, pp. 120-123. IEEE.
[17] Jung, Y.C. & Bhushan, B.2008Dynamic effects of bouncing water droplets on superhydrophobic surfaces. Langmuir24 (12), 6262-6269.
[18] Kim, J., Moon, M.-W. & Kim, H.-Y.2016Dynamics of hemiwicking. J. Fluid Mech.800, 57-71.
[19] Kita, Y., Dover, C.M., Askounis, A., Takata, Y. & Sefiane, K.2018Drop mobility on superhydrophobic microstructured surfaces with wettability contrasts. Soft Matt.14 (46), 9418-9424.
[20] Laermer, F. & Schilp, A.1996 Method for anisotropic plasma etching of substrates. US Patent 5, 498, 312.
[21] Launay, G., Sadullah, M.S., Mchale, G., Ledesma-Aguilar, R., Kusumaatmaja, H. & Wells, G.G.2020 Self-propelled droplet transport on shaped-liquid surfaces. Sci. Rep.10 (1), 1-8.
[22] Lyubimov, D.V., Lyubimova, T.P. & Shklyaev, S.V.2006Behavior of a drop on an oscillating solid plate. Phys. Fluids18 (1), 012101. · Zbl 1185.76471
[23] Macner, A.M., Daniel, S. & Steen, P.H.2014Condensation on surface energy gradient shifts drop size distribution toward small drops. Langmuir30 (7), 1788-1798.
[24] Moradi, N., Varnik, F. & Steinbach, I.2010Roughness-gradient-induced spontaneous motion of droplets on hydrophobic surfaces: A lattice Boltzmann study. Europhys. Lett.89 (2), 26006.
[25] Morrison, C.A., Leavitt, R. & Wortman, D.1981The extended rayleigh theory of the oscillation of liquid droplets. J. Fluid Mech.104, 295-309. · Zbl 0476.76098
[26] Öner, D. & Mccarthy, T.J.2000Ultrahydrophobic surfaces, effects of topography length scales on wettability. Langmuir16 (20), 7777-7782.
[27] Noblin, X., Kofman, R. & Celestini, F.2009Ratchetlike motion of a shaken drop. Phys. Rev. Lett.102 (19), 194504.
[28] Rayleigh, Lord1879On the capillary phenomena of jets. Proc. R. Soc. Lond.29 (196-199), 71-97.
[29] Reyssat, M., Pardo, F. & Quéré, D.2009Drops onto gradients of texture. Europhys. Lett.87 (3), 36003.
[30] Shastry, A., Case, M.J. & Böhringer, K.2005 Engineering surface roughness to manipulate droplets in microfluidic systems. In 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005, pp. 694-697. IEEE.
[31] Shastry, A., Case, M.J. & Böhringer, K.F.2006Directing droplets using microstructured surfaces. Langmuir22 (14), 6161-6167.
[32] Shastry, A., Taylor, D. & Bohringer, K.F.2007 Micro-structured surface ratchets for droplet transport. In TRANSDUCERS 2007-2007 International Solid-State Sensors, Actuators and Microsystems Conference, pp. 1353-1356. IEEE.
[33] Soto, Á.M., Maddalena, T., Fraters, A., Van Der Meer, D. & Lohse, D.2018Coalescence of diffusively growing gas bubbles. J. Fluid Mech.846, 143-165. · Zbl 1404.76275
[34] Srinivasan, V., Pamula, V.K. & Fair, R.B.2004An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip4 (4), 310-315.
[35] Velev, O.D., Prevo, B.G. & Bhatt, K.H.2003On-chip manipulation of free droplets. Nature426 (6966), 515-516.
[36] Weisstein, E.W.2003 Maclaurin series. https://mathworld.wolfram.com/.
[37] Weisstein, E.W.2003b Oblate spheroid. https://mathworld.wolfram.com/.
[38] Weisstein, E.W.2003c Prolate spheroid. https://mathworld.wolfram.com/.
[39] Wenzel, R.N.1936Resistance of solid surfaces to wetting by water. Ind. Eng. Chem.28 (8), 988-994.
[40] Wildeman, S., Visser, C.W., Sun, C. & Lohse, D.2016On the spreading of impacting drops. J. Fluid Mech.805, 636-655.
[41] Wixforth, A., Strobl, C., Gauer, C., Toegl, A., Scriba, J. & Guttenberg, Z.V.2004Acoustic manipulation of small droplets. Anal. Bioanal. Chem.379 (7-8), 982-991.
[42] Xu, W. & Choi, C.-H.2012From sticky to slippery droplets: dynamics of contact line depinning on superhydrophobic surfaces. Phys. Rev. Lett.109 (2), 024504.
[43] Yang, J.-T., Chen, J.C., Huang, K.-J. & Yeh, J.A.2006Droplet manipulation on a hydrophobic textured surface with roughened patterns. J. Microelectromech. Syst.15 (3), 697-707.
[44] Yeh, S.I., Fang, W.F., Sheen, H.J. & Yang, J.T.2013Droplets coalescence and mixing with identical and distinct surface tension on a wettability gradient surface. Microfluid. Nanofluidics14 (5), 785-795.
[45] Yoshimitsu, Z., Nakajima, A., Watanabe, T. & Hashimoto, K.2002Effects of surface structure on the hydrophobicity and sliding behavior of water droplets. Langmuir18 (15), 5818-5822.
[46] Young, T.1805III. An essay on the cohesion of fluids. Phil. Trans. R. S. Lond.95, 65-87.
[47] Zhao, H., Orejon, D., Mackenzie-Dover, C., Valluri, P., Shanahan, M.E.R. & Sefiane, K.2020Droplet motion on contrasting striated surfaces. Appl. Phys. Lett.116 (25), 251604.
[48] Zheng, Y., Bai, H., Huang, Z., Tian, X., Nie, F.-Q., Zhao, Y., Zhai, J. & Jiang, L.2010Directional water collection on wetted spider silk. Nature463 (7281), 640-643.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.