×

Tests for differential Gaussian Bayesian networks based on quadratic inference functions. (English) Zbl 1510.62046

Summary: Hypotheses testing procedures based on quadratic inference functions are proposed to test whether two Gaussian Bayesian networks are differential in structure, strength of associations between nodes, or both. Bootstrap procedures are developed to estimate \(p\)-values to quantify the statistical significance of the tests. Operating characteristics of these testing procedures are investigated using synthetic data in simulation experiments. Additionally, the proposed methods are applied to flow cytometry data from a designed experiment, and data of bile acids from an observational study in the Alzheimer’s Disease Neuroimaging Initiative.

MSC:

62-08 Computational methods for problems pertaining to statistics
62H15 Hypothesis testing in multivariate analysis
62P10 Applications of statistics to biology and medical sciences; meta analysis

Software:

MIM; DNA
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ambrosini, Y. M.; Borcherding, D. C.; Kanthasamy, A.; Kim, H. J.; Willette, A. A.; Jergens, A. E.; Allenspach, K.; Mochel, J. P., The gut-brain-axis in neurodegenerative diseases and relevance of the canine model: A review, Front. Aging Neurosci., 11, 130 (2019)
[2] Andersson, S. A.; Madigan, D.; Perlman, M. D., A characterization of Markov equivalence classes for acyclic digraphs, Ann. Statist., 25, 2, 505-541 (1997) · Zbl 0876.60095
[3] Aragam, B.; Zhou, Q., Concave penalized estimation of sparse Gaussian Bayesian networks, J. Mach. Learn. Res., 16, 1, 2273-2328 (2015) · Zbl 1351.68203
[4] Chickering, D. M., Learning equivalence classes of Bayesian-network structures, J. Mach. Learn. Res., 2, Feb, 445-498 (2002) · Zbl 1007.68179
[5] Chung, F.; Chung, F. R.; Graham, F. C.; Lu, L.; Chung, K. F., Complex Graphs and Networks, No. 107 (2006), American Mathematical Society
[6] Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; Stein, C., Introduction to Algorithms (2001), The MIT Press · Zbl 1047.68161
[7] Durante, D.; Dunson, D. B., Bayesian inference and testing of group differences in brain networks, Bayesian Anal., 13, 1, 29-58 (2018) · Zbl 06873717
[8] Edwards, D., Introduction to Graphical Modelling (2012), Springer Science & Business Media
[9] Ellis, B.; Wong, W. H., Learning causal Bayesian network structures from experimental data, J. Amer. Statist. Assoc., 103, 482, 778-789 (2008) · Zbl 1471.62056
[10] Fan, J.; Li, R., Variable selection via nonconcave penalized likelihood and its oracle properties, J. Amer. Statist. Assoc., 96, 456, 1348-1360 (2001) · Zbl 1073.62547
[11] Freedman, D. A., Bootstrapping regression models, Ann. Statist., 9, 6, 1218-1228 (1981) · Zbl 0449.62046
[12] Fu, F.; Zhou, Q., Learning sparse causal Gaussian networks with experimental intervention: regularization and coordinate descent, J. Amer. Statist. Assoc., 108, 501, 288-300 (2013) · Zbl 06158343
[13] Gill, R.; Datta, S.; Datta, S., A statistical framework for differential network analysis from microarray data, BMC Bioinformatics, 11, 1, 95 (2010)
[14] Hauser, A.; Bühlmann, P., Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs, J. Mach. Learn. Res., 13, Aug, 2409-2464 (2012) · Zbl 1433.68346
[15] Huang, X.; Zhang, H., Variable selection in linear measurement error models via penalized score functions, J. Statist. Plann. Inference, 143, 12, 2101-2111 (2013) · Zbl 1278.62111
[16] Huang, X.; Zhang, H., Corrected score method for estimating directed acyclic graphs with error-prone nodes, Stat. Med. (2021)
[17] Jacob, L.; Neuvial, P.; Dudoit, S., More power via graph-structured tests for differential expression of gene networks, Ann. Appl. Stat., 6, 2, 561-600 (2012) · Zbl 1243.62080
[18] Jensen, F. V., An Introduction to Bayesian Networks, Vol. 210 (1996), UCL press London
[19] Kahn, A. B., Topological sorting of large networks, Commun. ACM, 5, 11, 558-562 (1962) · Zbl 0106.32602
[20] Lauritzen, S. L., Graphical Models, Vol. 17 (1996), Clarendon Press
[21] Lindsay, B. G.; Qu, A., Inference functions and quadratic score tests, Statist. Sci., 394-410 (2003) · Zbl 1055.62047
[22] Ma, Q.; Xing, C.; Long, W.; Wang, H. Y.; Liu, Q.; Wang, R.-F., Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis, J. Neuroinflammation, 16, 1, 53 (2019)
[23] Mahmoudian Dehkordi, S.; Arnold, M.; Nho, K.; Ahmad, S.; Jia, W.; Xie, G.; Louie, G.; Kueider-Paisley, A.; Moseley, M. A.; Thompson, J. W., Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease—an emerging role for gut microbiome, Alzheimer’s Dement., 15, 1, 76-92 (2019)
[24] Mohajeri, M. H.; La Fata, G.; Steinert, R. E.; Weber, P., Relationship between the gut microbiome and brain function, Nutr. Rev., 76, 7, 481-496 (2018)
[25] Neapolitan, R. E., Probabilistic Reasoning in Expert Systems: Theory and Algorithms (2012), CreateSpace Independent Publishing Platform
[26] Nielsen, T. D.; Jensen, F. V., Bayesian Networks and Decision Graphs (2009), Springer Science & Business Media
[27] Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (2014), Morgan Kaufmann
[28] Peters, J.; Bühlmann, P.; Meinshausen, N., Causal inference by using invariant prediction: identification and confidence intervals, J. R. Stat. Soc. Ser. B Stat. Methodol. (2016) · Zbl 1414.62297
[29] Peterson, C.; Stingo, F. C.; Vannucci, M., Bayesian inference of multiple Gaussian graphical models, J. Amer. Statist. Assoc., 110, 509, 159-174 (2015) · Zbl 1373.62106
[30] Sachs, K.; Perez, O.; Pe’er, D.; Lauffenburger, D. A.; Nolan, G. P., Causal protein-signaling networks derived from multiparameter single-cell data, Science, 308, 5721, 523-529 (2005)
[31] Shao, J., Bootstrap model selection, J. Amer. Statist. Assoc., 91, 434, 655-665 (1996) · Zbl 0869.62030
[32] Städler, N.; Dondelinger, F.; Hill, S. M.; Akbani, R.; Lu, Y.; Mills, G. B.; Mukherjee, S., Molecular heterogeneity at the network level: high-dimensional testing, clustering and a tcga case study, Bioinformatics, 33, 18, 2890-2896 (2017)
[33] Tibshirani, R., Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B Stat. Methodol., 267-288 (1996) · Zbl 0850.62538
[34] Verma, T.; Pearl, J., Equivalence and Synthesis of Causal Models (1991), UCLA, Computer Science Department
[35] Wu, C.-F. J., Jackknife, bootstrap and other resampling methods in regression analysis, Ann. Statist., 1261-1295 (1986) · Zbl 0618.62072
[36] Xia, Y.; Cai, T.; Cai, T. T., Testing differential networks with applications to the detection of gene-gene interactions, Biometrika, 102, 2, 247-266 (2015) · Zbl 1452.62392
[37] Zhao, S. D.; Cai, T. T.; Li, H., Direct estimation of differential networks, Biometrika, 101, 2, 253-268 (2014) · Zbl 1452.62865
[38] Zhao, S.; Ottinger, S.; Peck, S.; Mac Donald, C.; Shojaie, A., Network differential connectivity analysis (2019), arXiv preprint arXiv:1909.13464
[39] Zou, H., The adaptive lasso and its oracle properties, J. Amer. Statist. Assoc., 101, 476, 1418-1429 (2006) · Zbl 1171.62326
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.