×

Reflections and powers of multisorted minions. (English) Zbl 07317153

Summary: Classes of multisorted minions closed under extensions, reflections, and direct powers are considered from a relational point of view. As a generalization of a result of Barto, Opršal, and Pinsker, the closure of a multisorted minion is characterized in terms of constructions on multisorted relation pairs which are invariant for minions.

MSC:

08A68 Heterogeneous algebras
03C05 Equational classes, universal algebra in model theory
06A15 Galois correspondences, closure operators (in relation to ordered sets)
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Aichinger, E.; Mayr, P., Finitely generated equational classes, J. Pure Appl. Algebra, 220, 2816-2827 (2016) · Zbl 1354.08004
[2] Barto, L., Bulín, J., Krokhin, A., Opršal, J.: Algebraic approach to promise constraint satisfaction. arXiv:1811.00970v3 (2019) · Zbl 1433.68271
[3] Barto, L.; Opršal, J.; Pinsker, M., The wonderland of reflections, Israel J. Math., 223, 363-398 (2018) · Zbl 1397.08002
[4] Brakensiek, J., Guruswami, V.: Promise constraint satisfaction: structure theory and a symmetric Boolean dichotomy. In: Czumaj, A. (ed.) Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, Philadelphia, PA, pp. 1782-1801 (2018) · Zbl 1403.68074
[5] Couceiro, M.; Foldes, S., On closed sets of relational constraints and classes of functions closed under variable substitutions, Algebra Univ., 54, 149-165 (2005) · Zbl 1095.08002
[6] Lau, D., Function Algebras on Finite Sets. A Basic Course on Many-Valued Logic and Clone Theory (2006), Berlin: Springer, Berlin · Zbl 1105.08001
[7] Lehtonen, E., Pöschel, R., Waldhauser, T.: Reflection-closed varieties of multisorted algebras and minor identities. Algebra Univ. 79, 70 (2018) · Zbl 1412.08003
[8] Lehtonen, E., Pöschel, R., Waldhauser, T.: Reflections on and of minor-closed classes of multisorted operations. Algebra Univ. 79, 71 (2018) · Zbl 1406.08002
[9] Pippenger, N., Galois theory for minors of finite functions, Discret. Math., 254, 405-419 (2002) · Zbl 1010.06012
[10] Pöschel, R.; Kalužnin, LA, Funktionen- und Relationenalgebren. Ein Kapitel der diskreten Mathematik (1979), Berlin: VEB Deutscher Verlag der Wissenschaften, Berlin · Zbl 0418.03044
[11] Sparks, A.: On the number of clonoids. Algebra Univ. 80, 53 (2019) · Zbl 1436.08005
[12] Wechler, W., Universal Algebra for Computer Scientists. EATCS Monographs in Theoretical Computer Science (1992), Berlin: Springer, Berlin · Zbl 0748.68002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.