×

Estimation of the reset voltage in resistive RAMs using the charge-flux domain and a numerical method based on quasi-interpolation and discrete orthogonal polynomials. (English) Zbl 07316725

Summary: Resistive RAMs (RRAMs) are the most promising devices for the near future in terms of non-volatile memory applications. This new technology requires advances in all the fronts that need to be addressed prior to industrialization. One of them is connected with compact modeling, i.e, the development of analytical expressions to account for the most important physical effects that are needed to calculate the current, capacitance, transient response, etc. The device models should be accurate and this issue is achieved by implementing the correct physics in a flexible and robust mathematical architecture. We will focus on this latter problem here since we will deal with a good numerical approximation of experimental data based on spline quasi-interpolation to perform the integrals of the current and voltage as function of time. We do so to transform the usual modeling domain, consisting of a current-voltage representation, to a charge-flux domain; i.e., the time integral of the current and voltage measured variables. In this domain we introduced a new method to obtain the reset voltage of RRAMs and avoid the effects of the usual measurement noise. The main features of the mathematical technique we propose along with practical examples built upon real experimental data will be explained. The numerical stability of this new technique is of great interest for the implementation in automatic measurement environments for industrial applications.

MSC:

65Dxx Numerical approximation and computational geometry (primarily algorithms)
65-XX Numerical analysis
41-XX Approximations and expansions
41Axx Approximations and expansions

Software:

OPQ
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Al Chawa, M. M.; Picos, R.; Roldán, J. B.; Jiménez-Molinos, F.; Villena, M. A.; de Benito, C., Exploring resistive switching based memristors in the charge-flux domain, a modeling approach, Int. J. Circuit Theory Appl. (2017)
[2] Barrera, D.; Ibáñez, M. J.; Jiménez-Molinos, F.; Roldán, A. M.; Roldán, J. B., A spline quasi-interpolation based method to obtain the reset voltage in resistive RAMs in the charge-flux domain, J. Comput. Appl. Math. (2018) · Zbl 1415.65281
[3] Barrera, D.; Ibáñez, M. J.; Roldán, A. M.; Roldán, J. B.; Yáñez, R., Polynomial pattern finding in scattered data, J. Comput. Appl. Math., 318, 107-116 (2017) · Zbl 1372.82042
[4] Bartoň, M.; Calo, V. M., Gauss-Galerkin quadrature rules for quadratic and cubic spline spaces and their application to isogeometric analysis, Comput. Aided Des., 82, 57-67 (2017)
[5] Bhatti, M.; Bracken, P., The calculation of integrals involving B-splines by means of recursion relations, Appl. Math. Comput., 172, 91 (2006) · Zbl 1088.65019
[6] de Boor, C., A Practical Guide to Splines (revised version) (2001), Springer: Springer New York · Zbl 0987.65015
[7] Chihara, T. S., An Introduction to Orthogonal Polynomials (2011), Courier Corporation · Zbl 0389.33008
[8] Chua, L. O., Resistance switching memories are memristors, Appl. Phys. A, 102, 765-783 (2011)
[9] Davis, P. J.; Rabinowitz, P., Methods of Numerical Integration (2007), Courier Corporation · Zbl 1139.65016
[10] R. Degraeve, et al. Hourglass concept for RRAM: A dynamic and statistical device model. in: Proceedings of the 21th International Symposium on the Physical and Failure Analysis of Integrated Circuits, IPFA , 2014.; R. Degraeve, et al. Hourglass concept for RRAM: A dynamic and statistical device model. in: Proceedings of the 21th International Symposium on the Physical and Failure Analysis of Integrated Circuits, IPFA , 2014.
[11] DeVore, R. A.; Lorentz, G. G., Constructive Approximation (1993), Springer Verlag · Zbl 0797.41016
[12] Gautschi, W., Orthogonal Polynomials: Computation and Approximation (2004), Oxford University Press on Demand · Zbl 1130.42300
[13] Gautschi, W., Orthogonal polynomials (in Matlab), J. Comput. Appl. Math., 178, 1-2, 215-234 (2005) · Zbl 1067.65023
[14] González, P.; Ibáñez, M. J.; Roldán, J. B.; Roldán, A. M.; Yáñez, R., An in-depth study on WENO-based techniques to improve parameter extraction procedures in MOSFET transistors, Math. Comput. Simulation, 118, 248-257 (2015) · Zbl 07313420
[15] González, M. B.; Rafi, J.; Beldarrain, O.; Zabala, M.; Campabadal, F., Analysis of the switching variability in Ni/HfO2-based RRAM devices, IEEE Trans. Device Mater. Reliab., 14, 769-771 (2014)
[16] González-Cordero, G.; Jiménez-Molinos, F.; Roldán, J. B.; González, M.; Campabadal, F., An in-depth study of the physics behind resistive switching in TiN/Ti/HfO2/W structures, J. Vac. Sci. Technol., 35, 01A110 (2017)
[18] Ibáñez, M. J.; Roldán, J. B.; Roldán, A. M.; Yáñez, R., A comprehensive characterization of the threshold voltage extraction in MOSFETs transistors based on smoothing splines, Math. Comput. Simulation, 102, 1-10 (2014) · Zbl 07312609
[20] Larentis, S.; Nardi, F.; Balatti, S.; Gilmer, D. C.; Ielmini, D., Resistive switching by voltage-driven ion migration in bipolar RRAM. Part II: Modeling, IEEE Trans. Electron Devices, 59, 2468-2475 (2012)
[21] von Neumann, J., The Computer and the Brain (1958), Yale University Press: Yale University Press New Haven, CT · Zbl 0085.14106
[22] Pan, F.; Gao, S.; Chen, C.; Song, C.; Zeng, F., Recent progress in resistive random access memories: Materials, switching mechanisms and performance, Mater. Sci. Eng., 24, 421 (2014)
[23] R. Picos, J.B. Roldán, M.N. Al Chawa, F. Jiménez-Molinos, M.A. Villena, E. García-Moreno, Exploring ReRAM-based memristors in the charge-flux domain, a modeling approach. in: Proceedings of International Conference on Memristive Systems, MEMRISYS2015.; R. Picos, J.B. Roldán, M.N. Al Chawa, F. Jiménez-Molinos, M.A. Villena, E. García-Moreno, Exploring ReRAM-based memristors in the charge-flux domain, a modeling approach. in: Proceedings of International Conference on Memristive Systems, MEMRISYS2015.
[24] Robinson, S. M.; Stroud, A. H., The approximate solution of an integral equation using high-order Gaussian quadrature formulas, Math. Comp., 82, 286-288 (1961) · Zbl 0102.11601
[25] Schumaker, L. L., Spline Functions: Basic Theory (1973), Wiley: Wiley New York · Zbl 0449.41004
[26] Shin, S.; Kim, K.; Kang, S. M., Compact models for memristors based on charge-flux constitutive relationships, Comput.-Aided Des. Integr. Circuits Syst., 29, 590-598 (2010)
[27] M. Suri, O. Bichler, D. Querlioz, G. Palma, CBRAM devices as binary synapses for low-power stochastic neuromorphic systems: Auditory (cochlea) and visual (retina) cognitive processing applications. in: International Electron Devices Meeting, IEDM, 2012, pp. 10.3.1-10.3.4.; M. Suri, O. Bichler, D. Querlioz, G. Palma, CBRAM devices as binary synapses for low-power stochastic neuromorphic systems: Auditory (cochlea) and visual (retina) cognitive processing applications. in: International Electron Devices Meeting, IEDM, 2012, pp. 10.3.1-10.3.4.
[28] Villena, M. A.; González, M. B.; Jiménez-Molinos, F.; Campabadal, F.; Roldán, J. B.; Sune, J.; Romera, E.; Miranda, E., Simulation of thermal reset transitions in resistive switching memories including quantum effects, J. Appl. Phys., 115, Article 214504 pp. (2014)
[30] Villena, M. A.; Jiménez-Molinos, F.; Roldán, J. B.; Sune, J.; Long, S.; Lian, X.; Gámiz, F.; Liu, M., An in-depth simulation study of thermal reset transitions in resistive switching memories, J. Appl. Phys., 114, Article 144505 pp. (2013)
[33] Waser, R.; Aono, M., Nanoionics-based resistive switching memories, Nature Mater., 6, 833-840 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.