×

Multiple parameter determination in textile material design: a Bayesian inference approach based on simulation. (English) Zbl 07316240

Summary: A mathematical model of heat-moisture transfer within textiles and a corresponding inverse problem of textile material design (IPTMD) are reformulated. A stability theorem for the forward problem is given to show wellposedness of the heat-moisture transfer model. A Bayesian inference approach is presented to solve the IPTMD based on thermal comfort of clothing. The triple parameters (thickness, thermal conductivity, porosity of textiles) are simultaneously determined in the sense of the statistical point estimation by the likelihood function. The Bayesian techniques based on Markov chain Monte Carlo (MCMC) methods are employed to simultaneously determine three parameters in IPTMD, where the Metropolis-Hastings algorithm is applied in the inversion process. The interpolated likelihood function reduces significantly the computational cost associated with the implementation of MCMC method without loss of accuracy in the parameters estimation. Numerical experiments confirm that Bayesian inference method can provide more accurate solutions to the IPTMD.

MSC:

80Mxx Basic methods in thermodynamics and heat transfer
34Axx General theory for ordinary differential equations
80Axx Thermodynamics and heat transfer
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adams, R. A., Sobolev Spaces (1975), Academic Press: Academic Press New York · Zbl 0314.46030
[2] Cui, P.; Xu, D. H., Simultaneous determination of thickness and heat conductivity in fabric design: steady -state modeling and PSO algorithms, J. Fiber Bioeng. Inform., 6, 195-204 (2013)
[3] Fan, J. T.; Cheng, X.; Wen, X., An improved model of heat and moisture transfer with phase change and mobile condensates in fibrous insulation and comparison with experimental results, Int. J. Heat Mass Transfer, 47, 2343-2352 (2004)
[4] He, Y. G.; Xu, D. H.; Chen, R. L., Bayesian statistical inference method for inverse problems of textile material design, J. Text. Res., 36, 23-29 (2015)
[5] Huang, J. H., Clothing Comfort (2008), Science Press: Science Press Beijing
[6] Huang, H. X.; Ye, C. H.; Sun, W. W., Moisture transport in fibrous clothing assemblies, J. Eng. Math., 61, 35-54 (2008) · Zbl 1138.76063
[7] Kaipio, J.; Somersalo, E., Statistical and Computational Inverse Problems (2004), Springer-Verlag: Springer-Verlag New York · Zbl 0927.35134
[8] Laurini, L. P.; Hotta, L. K., Indirect inference in fractional short-term interest rate diffusions, Math. Comput. Simul., 94, 109-126 (2013)
[9] Orlande, H. R.B.; Colaco, M. J.; Dulikravich, G. S., Approximation of the likehood function in the Bayesian technique for the solution of inverse problems, Inverse Probl. Sci. Eng., 45, 677-692 (2008) · Zbl 1154.65006
[10] Parthasarathy, S.; Balaji, C., Estimation of parameters in multi-mode heat transfer problems using Bayesian inference -Effect of noise and a priori, Int. J. Heat Mass Transfer, 51, 2313-2334 (2008) · Zbl 1144.80377
[11] Preiss, D., On Frechet differentiability of Lipschitz maps between Banach spaces, Ann. Math., 157, 257-288 (2003) · Zbl 1171.46313
[12] Robert, C. P.; Casella, G., Monte Carlo Statistical Methods (2004), Springer: Springer New York · Zbl 1096.62003
[13] Stuart, A. M., Inverse problems: A Bayesian perspective, Acta Numer., 19, 19, 451-559 (2010) · Zbl 1242.65142
[14] Tikhonov, A. N., Solution of Ill-Posed Problems (1997), Halsted Press: Halsted Press Washington
[15] Wang, X. P.; Cao, L. M., Genetic Algorithm: Theory, Application and Software Implementation (2002), Xi’an Jiao Tong University Press: Xi’an Jiao Tong University Press Xi’an
[16] Wang, J.; Zabaras, N., A Bayesian inference approach to the inverse heat conduction problem, Int. J. Heat Mass Transfer, 47, 3914-3927 (2004) · Zbl 1070.80002
[17] Wang, J.; Zabaras, N., Using Bayesian statistics in the estimation of heat source in radiation, Int. J. Heat Mass Transfer, 48, 15-29 (2005) · Zbl 1122.80307
[18] Xu, D. H., Mathematical Model of Heat and Moisture Transfer and Inverse Problems of Textile Material Design (2014), Science Press: Science Press Beijing
[19] Xu, D. H.; Chen, Y. B.; Cheng, J. X., An inverse problem of type design for textile materials under low temperature, J. Text. Res., 32, 24-28 (2011)
[20] D.H. Xu, J.X. Cheng, X.H. Zhou, A model of heat and moisture transfer through the parallel pore textiles, in: Proc. Textile Bioeng. Inform. Symp.(Shanghai) 2010, pp. 1139-1144.
[21] Xu, D. H.; Ge, M. B., Thickness determination in textile material design: dynamic modeling and numerical algorithms, Inverse Probab., 28, 035011 (2012), 1-22 · Zbl 1236.80011
[22] Xu, D. H.; Ge, M. B.; Zhou, X. H., Type design for bilayer textile materials under low temperature: modeling, numerical algorithm and simulation, Int. J. Heat Mass Transfer, 60, 582-590 (2013)
[23] Xu, Y. H.; Xu, D. H.; Zhang, L. P.; Zhou, X. H., A new inverse problem for the thickness determination of textile fabrics, Inverse Probab. Sci. Eng., 23, 635-650 (2015) · Zbl 1326.80012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.