Yield criterion and finite strain behavior of random porous isotropic materials. (English) Zbl 1476.74030

Summary: The mechanical response of isotropic elastoplastic materials containing random distributions of initially spherical voids is investigated computationally based on Fast Fourier Transform simulations. Numerical limit-analysis simulations at constant stress triaxiality allow to determine the yield surfaces, leading in particular to the determination of a Representative Volume Element size for the onset of coalescence/inhomogeneous yielding. Moreover, two different coalescence regimes are observed that differ by the presence of shearing. The yield surfaces are found to be consistent with the combination of two models proposed in the literature, a GTN-type model calibrated for homogeneous yielding of random porous materials and an inhomogeneous yielding model accounting for both coalescence with or without shear. Finite strain simulations performed for different hardening moduli and stress triaxialities under axisymmetric loading conditions confirm the existence of a RVE up to the onset of inhomogeneous yielding. Coalescence strains are found to be significantly smaller for random porous materials than for periodic distribution of voids. A homogenized model is finally proposed that reproduces quantitatively the behavior of isotropic elastoplastic materials containing random distributions of voids under finite strains.


74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74E35 Random structure in solid mechanics


Full Text: DOI arXiv


[1] AMITEX_FFTP, ., 2020. http://www.maisondelasimulation.fr/projects/amitex/html/.
[2] Barrioz, P.-O.; Hure, J.; Tanguy, B., On void shape and distribution effects on void coalescence, Journal of Applied Mechanics, 86, 1 (2018)
[3] Becker, R., The effect of porosity distribution on ductile failure, J. Mech. Phys. Solids, 35, 577-599 (1987)
[4] Benzerga, A. A.; Besson, J., Plastic potentials for anisotropic porous solids, Eur. J. Mech. A Solids, 20, 397-434 (2001) · Zbl 1049.74017
[5] Benzerga, A. A.; Leblond, J.-B., Ductile fracture by void growth to coalescence, Adv. Appl. Mech., 44, 169-305 (2010)
[6] Benzerga, A.; Leblond, J.; Needleman, A.; Tvergaard, V., Ductile failure modeling, Int. J. Fract., 201, 29-80 (2016)
[7] Besson, J., Continuum models of ductile fracture: a review, Int. J. Damage Mech., 19, 3-52 (2010)
[8] Besson, J.; Cailletaud, G.; Chaboche, J.; Forest, S.; Blétry, M., Non-linear Mechanics of Materials (2010), Springer
[9] Bilger, N.; Auslender, F.; Bornert, M.; Michel, J.; Moulinec, H.; Suquet, P.; Zaoui, A., Effect of nonuniform distribution of voids on the plastic response of voided materials: a computational and statistical analysis, Int. J. Solids Struct., 42, 517-538 (2005) · Zbl 1102.74017
[10] Bilger, N.; Auslender, F.; Bornert, M.; Moulinec, H.; Suquet, P.; Zaoui, A., Bounds and estimates for the effective yield surface of porous media with a uniform or a nonuniform distribution of voids, Eur. J. Mech. A Solids, 26, 810-836 (2007) · Zbl 1119.74039
[11] Brown, L. M.; Embury, J. D., The initiation and growth of voids at second phase particles, (3rd International Conference on the strength of metals and alloys (1973), Institute of Metals), 164-168
[12] Cao, T.-S.; Mazière, M.; Danas, K.; Besson, J., A model for ductile damage prediction at low stress triaxialities incorporating void shape change and void rotation, Int. J. Solids Struct., 63, 240-263 (2015)
[13] Charière, R.; Marano, A.; Gélébart, L., Use of composite voxels in FFT based elastic simulations of hollow glass microspheres/polypropylene composites, Int. J. Solids Struct., 182-183, 1-14 (2020)
[14] Danas, K.; Aravas, N., Numerical modeling of elasto-plastic porous materials with void shape effects at finite deformations, Composites B, 43, 6, 2544-2559 (2012)
[15] Danas, K.; Ponte Castañeda, P., A finite strain model for anisotropic viscoplastic porous media: I - theory, Eur. J. Mech. A/Solids, 28, 387-401 (2009) · Zbl 1158.74445
[16] Dubensky, E.; Koss, D., Void/pore distributions and ductile fracture, Metall. Trans. A, 18A, 1887-1895 (1987)
[17] Fritzen, F.; Forest, S.; Bohlke, T.; Kondo, D.; Bohlke, T., Computational homogenization of porous materials of green type, Comput. Mech., 52, 121-134 (2013) · Zbl 1309.74061
[18] Fritzen, F.; Forest, S.; Bohlke, T.; Kondo, D.; Kanit, T., Computational homogenization of elasto-plastic porous metals, Int. J. Plast., 29, 102-119 (2012)
[19] Gluge, R.; Weber, M.; Bertram, A., Comparison of spherical and cubical statistical volume elements with respect to convergence, anisotropy, and localization behavior, Comput. Mater. Sci., 63, 91-104 (2012)
[20] Gologanu, M.; Leblond, J.-B.; Perrin, G.; Devaux, J., (Suquet, P., Continuum Micromechanics. Continuum Micromechanics, CISM Lectures Series (1997), Springer), 61-130, Chapter. Recent extension of Gurson’s model for porous ductile metals
[21] Gurson, A., Continuum theory of ductile rupture by void nucleation and growth: Part I - yield criteria and flow rules for porous ductile media, J. Eng. Math. Technol., 99, 2-15 (1977)
[22] Han, X.; Besson, J.; Forest, S.; Tanguy, B.; Bugat, S., A yield function for single crystals containing voids, Int. J. Solids Struct., 50, 2115-2131 (2013)
[23] Hannard, F.; Castin, S.; Maire, E.; Mokso, R.; Pardoen, T.; Simar, A., Ductilization of aluminium alloy 6056 by friction stir processing, Acta Mater., 130, 121-136 (2017)
[24] Helfer, T., Introducing the open-source mfront code generator: Application to mechanical behaviors and materials knowledge management within the PLEIADES fuel element modelling platform, Comput. Math. Appl., 70, 994-1023 (2015) · Zbl 1443.74004
[25] Hoang, T.; Guerich, M.; Yvonnet, J., Determining the size of RVE for nonlinear random composites in an incremental computational homogenization framework, J. Eng. Mech., 142, Article 04016018 pp. (2016)
[26] Hutter, G.; Zybell, L.; Muhlich, U.; Kuna, M., Consistent simulation of ductile crack propagation with discrete 3D voids, Comput. Mater. Sci., 80, 61-70 (2013)
[27] Keralavarma, S. M., A multi-surface plasticity model for ductile fracture simulations, J. Mech. Phys. Solids, 103, 100-120 (2017)
[28] Keralavarma, S.; Chockalingam, S., A criterion for void coalescence in anisotropic ductile materials, Int. J. Plast., 82, 159-176 (2016)
[29] Khdir, Y.; Kanit, T.; Zairi, F.; M., N.-A., A computational homogenization of random porous media: Effect of void shape and void content on the overall yield surface, Eur. J. Mech. A Solids, 49, 137-145 (2015)
[30] Koplik, J.; Needleman, A., Void growth and coalescence in porous plastic solids, Int. J. Solids Struct., 24, 835-853 (1988)
[31] Kuna, M.; Sun, D., Three-dimensional cell model analyses of void growth in ductile materials, Int. J. Fract., 81, 235-258 (1996)
[32] Liu, Y.; Zheng, X.; Osovski, S.; Srivastava, A., On the micromechanism of inclusion driven ductile fracture and its implications on fracture toughness, J. Mech. Phys. Solids, 130, 21-34 (2019)
[33] Madou, K.; Leblond, J.-B., A gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids. I. Limit-analysis of some representative cell, J. Mech. Phys. Solids, 60, 1020-1036 (2012)
[34] Magnusen, P.; Dubensky, E.; Koss, D., The effect of void arrays on void linking during ductile fracture, Acta Metall., 36, 1503-1509 (1988)
[35] Maire, E.; Withers, P., Quantitative X-ray tomography, Int. Mat. Rev., 59, 1-43 (2014)
[36] Mbiakop, A.; Constantinescu, A.; Danas, K., An analytical model for porous single crystals with ellipsoidal voids, J. Mech. Phys. Solids, 84, 436-467 (2015)
[37] Melander, A.; Stahlberg, U., The effect of void size and distribution on ductile fracture, Int. J. Fract., 16, 431-440 (1980)
[38] Miehe, C.; Apel, N.; Lambrecht, M., Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and implementation based on incremental minimization principles for standard materials, Comput. Methods Appl. Mech. Engrg., 191, 5383-5425 (2002) · Zbl 1083.74518
[39] Morin, L.; Leblond, J.; Kondo, D., A Gurson-type criterion for plastically anisotropic solids containing arbitrary ellipsoidal voids, Int. J. Solids Struct., 77, 86-101 (2015)
[40] Morin, L.; Michel, J.-C.; Leblond, J.-B., A gurson-type layer model for ductile porous solids with isotropic and kinematic hardening, Int. J. Solids Struct., 118-119, 167-178 (2017)
[41] Moulinec, H.; Suquet, P., A numerical method for computing the overall response of nonlinear composites with complex microstructure, Comput. Methods Appl. Mech. Engrg., 157, 69-94 (1998) · Zbl 0954.74079
[42] Navas, V.; Bernacki, M.; Bouchard, P., Void growth and coalescence in a three-dimensional non-periodic void cluster, Int. J. Solids Struct., 139-140, 65-78 (2018)
[43] Pardoen, T.; Hutchinson, J. W., An extended model for void growth and coalescence, J. Mech. Phys. Solids, 48, 2467-2512 (2000) · Zbl 1005.74059
[44] Paux, J.; Morin, L.; Brenner, R.; Kondo, D., An approximate yield criterion for porous single crystals, Eur. J. Mech. A/Solids, 51, 1-10 (2015) · Zbl 1406.74542
[45] Pineau, A.; Benzerga, A.; Pardoen, T., Failure of metals I: Brittle and ductile fracture, Acta Mat., 107, 424-483 (2016)
[46] Puttick, K. E., Ductile fracture in metals, Philos. Mag., 4, 964-969 (1959)
[47] Reddi, D.; Areej, V.; Keralavarma, S., Ductile failure simulations using a multi-surface coupled damage-plasticity model, Int. J. Plast., 118, 190-214 (2019)
[48] Rice, J. R.; Tracey, D. M., On the ductile enlargement of voids in triaxial stress fields, J. Mech. Phys. Solids, 17, 201-217 (1969)
[49] Scherer, J.; Hure, J., A size-dependent ductile fracture model: Constitutive equations, numerical implementation and validation, Eur. J. Mech. A Solids, 76, 135-145 (2019) · Zbl 07068152
[50] Shakoor, M.; Bernacki, M.; Bouchard, P., Ductile fracture of a metal matric composite studied using 3D numerical modeling of void nucleation and coalescence, Eng. Fract. Mech., 189, 110-132 (2018)
[51] Shen, Y.; Morgeneyer, T.; Garnier, J.; Allais, L.; Helfen, L.; Crépin, J., Three-dimensional quantitative in situ study of crack initiation and propagation in aa6061 aluminum alloy sheets via synchrotron laminography and finite-element simulations, Acta Mat., 61, 2571-2582 (2013)
[52] Song, D.; Ponte-Castañeda, P., A finite-strain homogenization model for viscoplastic porous single crystals. I-theory, J. Mech. Phys. Solids, 107, 560-579 (2017)
[53] Tekoğlu, C.; Huthcinson, J.; Pardoen, T., On localization and void coalescence as a precursor to ductile fracture, Phil. Trans. R. Soc. A, 373, Article 20140121 pp. (2015)
[54] Thomason, P. F., A theory for ductile fracture by internal necking of cavities, J. Inst. Metals, 96, 360 (1968)
[55] Thomason, P. F., Three-dimensional models for the plastic limit-loads at incipient failure of the intervoid matrix in ductile porous solids, Acta Metall., 33, 1079-1085 (1985)
[56] Thomson, C.; Worswick, M.; Pilkey, A.; Lloyd, D., Void coalescence with periodic clusters of particles, J. Mech. Phys. Solids, 51, 127-146 (2003) · Zbl 1100.74627
[57] Tipper, C. F., The fracture of metals, Mettalurgia, 39, 133-137 (1949)
[58] Torki, M. E.; Benzerga, A. A.; Leblond, J.-B., On void coalescence under combined tension and shear, J. Appl. Mech., 82, Article 071005 pp. (2015)
[59] Tvergaard, V., Nucleation from a cluster of inclusions, leading to void coalescence, Int. J. Mech. Sci., 133, 631-638 (2017)
[60] Tvergaard, V.; Hutchinson, J., Two mechanisms of ductile fracture: void by void growth versus multiple void interaction, Int. J. Solids Struct., 39, 3581-3597 (2002) · Zbl 1087.74625
[61] Tvergaard, V.; Needleman, A., Analysis of the cup-cone fracture in a round tensile bar, Acta Metall., 32, 157-169 (1984)
[62] Vincent, P.-G.; Suquet, P.; Monerie, Y.; Moulinec, H., Effective flow surface of porous materials with two populations of voids under internal pressure: II. full-field simulations, Int. J. Plast., 56, 74-98 (2014)
[63] Vishwakarma, V.; Keralavarma, S. M., Micromechanical modeling and simulation of the loading path dependence of ductile failure by void growth to coalescence, Int. J. Solids Struct., 166, 135-153 (2019)
[64] Weck, A.; Wilkinson, D., Experimental investigation of void coalescence in metallic sheets containing laser drilled holes, Acta Mater., 56, 1774-1784 (2008)
[65] Weck, A.; Wilkinson, D.; Maire, E.; Toda, H., Visualization by X-ray tomography of void growth and coalescence leading to fracture in model materials, Acta Mater., 56, 2919-2928 (2008)
[66] Wojtacki, K.; Vincent, P.-G.; Suquet, P.; Moulinec, H.; Boittin, G., A micromechanical model for the secondary creep of elasto-viscoplastic porous materials with two rate-sensitivity exponents: Application to a mixed oxide fuel, Int. J. Solids Struct., 184, 99-113 (2020), Physics and Mechanics of Random Structures: From Morphology to Material Properties
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.