×

An improved unified viscoplastic model for modelling low cycle fatigue and creep fatigue interaction loadings of 9–12%Cr steel. (English) Zbl 1476.74014

Summary: An accurate constitutive model is one of the basic aspects to ensure a precise simulation. This study presents an improved unified viscoplastic model to simulate the various behavior of P92 steel under low cycle fatigue (LCF) and creep fatigue interaction (CFI) loadings. In the proposed model, an accumulated inelastic strain dependent parameter is introduced into the nonlinear kinematic hardening rule to represent the evolutionary behavior of strain-stress hysteresis loops and the varied relaxation behavior during CFI loadings. The traditional isotropic hardening rule is modified as well to capture the accelerated cyclic softening phenomena observed in the prolonged hold time of CFI tests. To validate the accuracy and the predictive capability of the proposed model, LCF tests at various strain amplitudes and CFI tests at different hold time are conducted at elevated temperature of \(650^°\)C. Good agreement between the experimental and simulated results verifies the robustness of the proposed model. In addition, the proposed model is distinguished from published models by few determined material parameters.

MSC:

74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
74R20 Anelastic fracture and damage
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Abdel-Karim, M.; Ohno, N., Kinematic hardening model suitable for ratchetting with steady-state, Int. J. Plast., 16, 225-240 (2000) · Zbl 0977.74503
[2] Ahmed, R.; Barrett, P. R.; Hassan, T., Unified viscoplasticity modeling for isothermal low-cycle fatigue and fatigue-creep stress-strain responses of Haynes 230, Int. J. Solid Struct., 88-89, 131-145 (2016)
[3] Ahmed, R.; Hassan, T., Constitutive modeling for thermo-mechanical low-cycle fatigue-creep stress-strain responses of Haynes 230, Int. J. Solid Struct., 126-127, 122-139 (2017)
[4] Ainsworth, R., R5 procedures for assessing structural integrity of components under creep and creep-fatigue conditions, Int. Met. Rev., 51, 107-126 (2006)
[5] Armstrong, P. J.; Frederick, C., A Mathematical Representation of the Multiaxial Bauschinger Effect, 731 (1966), CEGB Report No. RD/B/N
[6] Bari, S.; Hassan, T., An advancement in cyclic plasticity modeling for multiaxial ratcheting simulation, Int. J. Plast., 18, 873-894 (2002) · Zbl 1050.74010
[7] Barrett, P. R.; Ahmed, R.; Menon, M.; Hassan, T., Isothermal low-cycle fatigue and fatigue-creep of Haynes 230, Int. J. Solid Struct., 88-89, 146-164 (2016)
[8] Barrett, P. R.; Hassan, T., A unified constitutive model in simulating creep strains in addition to fatigue responses of Haynes 230, Int. J. Solid Struct., 185-186, 394-409 (2020)
[9] Barrett, R. A.; Farragher, T. P.; Hyde, C. J.; O’Dowd, N. P.; O’Donoghue, P. E.; Leen, S. B., A unified viscoplastic model for high temperature low cycle fatigue of service-aged P91 steel, J. Pressure Vessel Technol., 136 (2014), 021402-021402-021408
[10] Barrett, R. A.; Farragher, T. P.; O’Dowd, N. P.; O’Donoghue, P. E.; Leen, S. B., Multiaxial cyclic viscoplasticity model for high temperature fatigue of P91 steel, Mater. Sci. Technol., 30, 67-74 (2013)
[11] Barrett, R. A.; O’Hara, E. M.; O’Donoghue, P. E.; Leen, S. B., High-temperature low-cycle fatigue behavior of MarBN at 600 C, J. Pressure Vessel Technol., 138, Article 041401 pp. (2016)
[12] Barrett, R. A.; O’Donoghue, P. E.; Leen, S. B., An improved unified viscoplastic constitutive model for strain-rate sensitivity in high temperature fatigue, Int. J. Fatig., 48, 192-204 (2013)
[13] Benaarbia, A.; Rae, Y.; Sun, W., Unified viscoplasticity modelling and its application to fatigue-creep behaviour of gas turbine rotor, Int. J. Mech. Sci., 136, 36-49 (2018)
[14] Benaarbia, A.; Rouse, J. P.; Sun, W., A thermodynamically-based viscoelastic-viscoplastic model for the high temperature cyclic behaviour of 9-12
[15] Benasciutti, D.; Srnec Novak, J.; Moro, L.; De Bona, F.; Stanojević, A., Experimental characterisation of a CuAg alloy for thermo-mechanical applications. Part 1: identifying parameters of non-linear plasticity models, Fatigue Fract. Eng. M., 41, 1364-1377 (2018)
[16] Chaboche, J.; Van, K. D.; Cordier, G., Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel (1979), IASMiRT
[17] Chaboche, J. L., Viscoplastic constitutive equations for the description of cyclic and anisotropic behaviour of metals, Bull. Del’ Acad. Polonaise des Sci. Serie Sc. Et Techn., 25-33 (1977)
[18] Chaboche, J. L., Constitutive equations for cyclic plasticity and cyclic viscoplasticity, Int. J. Plast., 5, 247-302 (1989) · Zbl 0695.73001
[19] Chaboche, J. L., On some modifications of kinematic hardening to improve the description of ratchetting effects, Int. J. Plast., 7, 661-678 (1991)
[20] Chaboche, J. L., A review of some plasticity and viscoplasticity constitutive theories, Int. J. Plast., 24, 1642-1693 (2008) · Zbl 1142.74012
[21] Chaboche, J. L.; Nouailhas, D.; Pacou, D.; Paulmier, P., Modeling of the cyclic response and ratchetting effects on inconel-718 alloy, Eur. J. Mech. A Solids, 10, 101-121 (1991)
[22] Chen, W.; Kitamura, T.; Feng, M., Creep and fatigue behavior of 316L stainless steel at room temperature: experiments and a revisit of a unified viscoplasticity model, Int. J. Fatig., 112, 70-77 (2018)
[23] Contesti, E.; Cailletaud, G., Description of creep-plasticity interaction with non-unified constitutive equations: application to an austenitic stainless steel, Nucl. Eng. Des., 116, 265-280 (1989)
[24] Ennis, P. J.; Czyrska-Filemonowicz, A., Recent advances in creep-resistant steels for power plant applications, Sadhana Acad. Proc. Eng. Sci., 28, 709-730 (2003)
[25] Figiel, L.; Gunther, B., Modelling the high-temperature longitudinal fatigue behaviour of metal matrix composites (SiC/Ti-6242): nonlinear time-dependent matrix behaviour, Int. J. Fatig., 30, 268-276 (2008) · Zbl 1140.74384
[26] Ikegami, K.; Niitsu, Y., Effect of creep prestrain on subsequent plastic deformation, Int. J. Plast., 1, 331-345 (1985)
[27] Jürgens, M.; Olbricht, J.; Fedelich, B.; Skrotzki, B., Low cycle fatigue and relaxation performance of ferritic-martensitic grade P92 steel, Metals, 9, 99 (2019)
[28] Kang, G.; Gao, Q.; Yang, X., A visco-plastic constitutive model incorporated with cyclic hardening for uniaxial/multiaxial ratcheting of SS304 stainless steel at room temperature, Mech. Mater., 34, 521-531 (2002)
[29] Kang, G.; Kan, Q.; Zhang, J.; Sun, Y., Time-dependent ratchetting experiments of SS304 stainless steel, Int. J. Plast., 22, 858-894 (2006)
[30] Klueh, R.; Nelson, A., Ferritic/martensitic steels for next-generation reactors, J. Nucl. Mater., 371, 37-52 (2007)
[31] Kyaw, S. T.; Rouse, J. P.; Lu, J.; Sun, W., Determination of material parameters for a unified viscoplasticity-damage model for a P91 power plant steel, Int. J. Mech. Sci., 115-116, 168-179 (2016)
[32] Lu, J.; Sun, W.; Becker, A.; Saad, A. A., Simulation of the fatigue behaviour of a power plant steel with a damage variable, Int. J. Mech. Sci., 100, 145-157 (2015)
[33] Maier, G.; Riedel, H.; Somsen, C., Cyclic deformation and lifetime of Alloy617B during isothermal low cycle fatigue, Int. J. Fatig., 55, 126-135 (2013)
[34] Miller, A., An inelastic constitutive model for monotonic, cyclic, and creep deformation: Part I—equations development and analytical procedures, J. Eng. Mater. Technol., 98, 97-105 (1976)
[35] Murty, K.; Charit, I., Structural materials for Gen-IV nuclear reactors: challenges and opportunities, J. Nucl. Mater., 383, 189-195 (2008)
[36] Ohno, N.; Wang, J. D., Kinematic hardening rules with critical state of dynamic recovery, part I: formulation and basic features for ratchetting behavior, Int. J. Plast., 9, 375-390 (1993) · Zbl 0777.73017
[37] Saad, A. A.; Hyde, T. H.; Sun, W.; Hyde, C. J.; Tanner, D. W.J., Characterization of viscoplasticity behaviour of P91 and P92 power plant steels, Int. J. Pres. Ves. Pip., 111, 246-252 (2013)
[38] Szmytka, F.; Rémy, L.; Maitournam, H.; Köster, A.; Bourgeois, M., New flow rules in elasto-viscoplastic constitutive models for spheroidal graphite cast-iron, Int. J. Plast., 26, 905-924 (2010) · Zbl 1426.74085
[39] Tong, J.; Zhan, Z. L.; Vermeulen, B., Modelling of cyclic plasticity and viscoplasticity of a nickel-based alloy using Chaboche constitutive equations, Int. J. Fatig., 26, 829-837 (2004)
[40] Velay, V.; Bernhart, G.; Penazzi, L., Cyclic behavior modeling of a tempered martensitic hot work tool steel, Int. J. Plast., 22, 459-496 (2006) · Zbl 1139.74405
[41] Wang, R.-Z.; Zhang, X.-C.; Gong, J.-G.; Zhu, X.-M.; Tu, S.-T.; Zhang, C.-C., Creep-fatigue life prediction and interaction diagram in nickel-based GH4169 superalloy at 650°C based on cycle-by-cycle concept, Int. J. Fatig., 97, 114-123 (2017)
[42] Wang, R.-Z.; Zhang, X.-C.; Tu, S.-T.; Zhu, S.-P.; Zhang, C.-C., A modified strain energy density exhaustion model for creep-fatigue life prediction, Int. J. Fatig., 90, 12-22 (2016)
[43] Wang, X. W.; Gong, J. M.; Zhao, Y. P.; Wang, Y. F.; Yu, M. H., Characterization of low cycle fatigue performance of new ferritic P92 steel at high temperature: effect of strain amplitude, Steel Res. Int., 86, 1046-1055 (2015)
[44] Wang, X. W.; Jiang, Y.; Gong, J. M.; Zhao, Y. P.; Huang, X., Characterization of low cycle fatigue of ferritic-martensitic P92 steel: effect of temperature, Steel Res. Int., 87, 761-771 (2016)
[45] Wang, X. W.; Zhang, W.; Gong, J. M.; Wahab, M. A., Low cycle fatigue and creep fatigue interaction behavior of 9Cr-0.5Mo-1.8W-V-Nb heat-resistant steel at high temperature, J. Nucl. Mater., 505, 73-84 (2018)
[46] Wu, D.-L.; Xuan, F.-Z.; Guo, S.-J.; Zhao, P., Uniaxial mean stress relaxation of 9-12
[47] Xie, X.-f.; Jiang, W.; Chen, J.; Zhang, X.; Tu, S.-T., Cyclic hardening/softening behavior of 316L stainless steel at elevated temperature including strain-rate and strain-range dependence: experimental and damage-coupled constitutive modeling, Int. J. Plast., 114, 196-214 (2019)
[48] Yaguchi, M.; Takahashi, Y., A viscoplastic constitutive model incorporating dynamic strain aging effect during cyclic deformation conditions, Int. J. Plast., 16, 241-262 (2000) · Zbl 0954.74506
[49] Yaguchi, M.; Takahashi, Y., Ratchetting of viscoplastic material with cyclic softening, part 2: application of constitutive models, Int. J. Plast., 21, 835-860 (2005) · Zbl 1112.74346
[50] Yaguchi, M.; Yamamoto, M.; Ogata, T., A viscoplastic constitutive model for nickel-base superalloy, part 1: kinematic hardening rule of anisotropic dynamic recovery, Int. J. Plast., 18, 1083-1109 (2002) · Zbl 1045.74015
[51] Zhan, Z.; Fernando, U.; Tong, J., Constitutive modelling of viscoplasticity in a nickel-based superalloy at high temperature, Int. J. Fatig., 30, 1314-1323 (2008) · Zbl 1273.74033
[52] Zhan, Z. L.; Tong, J., A study of cyclic plasticity and viscoplasticity in a new nickel-based superalloy using unified constitutive equations. Part I: evaluation and determination of material parameters, Mech. Mater., 39, 64-72 (2007)
[53] Zhang, H.; Xie, D.; Yu, Y.; Yu, L., Online optimal control schemes of inlet steam temperature during startup of steam turbines considering low cycle fatigue, Energy, 117, 105-115 (2016)
[54] Zhang, J.; Jiang, Y., Constitutive modeling of cyclic plasticity deformation of a pure polycrystalline copper, Int. J. Plast., 24, 1890-1915 (2008) · Zbl 1144.74005
[55] Zhang, S.-L.; Xuan, F.-Z., Interaction of cyclic softening and stress relaxation of 9-12
[56] Zheng, X.-T.; Xuan, F.-Z.; Zhao, P., Ratcheting-creep interaction of advanced 9-12
[57] Zhou, J.; Sun, Z.; Kanouté, P.; Retraint, D., Experimental analysis and constitutive modelling of cyclic behaviour of 316L steels including hardening/softening and strain range memory effect in LCF regime, Int. J. Plast., 107, 54-78 (2018)
[58] Zhu, S.-P.; Huang, H.-Z.; He, L.-P.; Liu, Y.; Wang, Z., A generalized energy-based fatigue-creep damage parameter for life prediction of turbine disk alloys, Eng. Fract. Mech., 90, 89-100 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.