×

Efficient temperature dependence of parameters for thermo-mechanical finite element modeling of alloy 230. (English) Zbl 1478.74023

Summary: Nickel-based alloys are often selected for manufacturing components operating in extreme conditions such as high-temperature thermo-mechanical cyclic loadings because of their good corrosion and high temperature resistance. This is, for instance, the case for solar receivers where the material undergoes daily cycles going from ambient temperature to approximately \(700^°\)C. To predict the material behavior under this type of complex loadings, advanced numerical models – such as Chaboche-type models – are required. In addition to the model, a complete representation of the temperature dependency of the material is essential for both numerical stability and physical accuracy of the model, which is obtained with parameters assuring a certain continuity over the studied range of temperature. To this end, a new formulation for the temperature dependency of material parameters in Chaboche-type models is proposed for the Alloy 230 under both anisothermal and isothermal cyclic loadings.

MSC:

74F05 Thermal effects in solid mechanics
74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
74R99 Fracture and damage
74S05 Finite element methods applied to problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ahmed, R., Constitutive Modeling for Very High Temperature Thermo-Mechanical Fatigue Responses (2013), North Carolina State University
[2] Ahmed, R.; Barrett, P. R.; Hassan, T., Unified viscoplasticity modeling for isothermal low-cycle fatigue and fatigue-creep stress-strain responses of Haynes 230, Int. J. Solids Struct., 88-89, 131-145 (2016)
[3] Ahmed, R.; Barrett, P. R.; Menon, M.; Hassan, T., Thermo-mechanical low-cycle fatigue-creep of Haynes 230, Int. J. Solids Struct., 126-127, 90-104 (2017)
[4] Ahmed, R.; Hassan, T., Constitutive modeling for thermo-mechanical low-cycle fatigue-creep stress-strain responses of Haynes 230. Int. J. Solids Struct (2017), 126-127. 122, 139
[5] Barrett, P. R.; Ahmed, R.; Menon, M.; Hassan, T., Isothermal low-cycle fatigue and fatigue-creep of Haynes 230. Int. J, Solids Struct, 88-89, 146-164 (2016)
[6] Benasciutti, D.; Srnec Novak, J.; Moro, L.; De Bona, F.; Stanojević, A., Experimental characterisation of a CuAg alloy for thermo-mechanical applications. Part 1: identifying parameters of non-linear plasticity models, Fatigue Fract. Eng. Mater. Struct., 41, 1364-1377 (2018)
[7] Bondar, V. S.; Dansin, V. V.; Vu, L. D.; Duc, N. D., Constitutive modeling of cyclic plasticity deformation and low-high-cycle fatigue of stainless steel 304 in uniaxial stress state, Mech. Adv. Mater. Struct., 25, 1009-1017 (2018)
[8] Cailletaud, G.; Quilici, S.; Azzouz, F.; Chaboche, J. L., A dangerous use of the fading memory term for non linear kinematic models at variable temperature, Eur. J. Mech. Solid., 54, 24-29 (2015) · Zbl 1406.74004
[9] Chaboche, J., Constitutive equations for cyclic plasticity and cyclic viscoplasticity, Int. J. Plast., 5, 247-302 (1989) · Zbl 0695.73001
[10] Chaboche, J. L., A review of some plasticity and viscoplasticity constitutive theories, Int. J. Plast., 24, 1642-1693 (2008) · Zbl 1142.74012
[11] Chaboche, J. L.; Dang Van, K.; Cordier, G., Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel, SMiRT 5, Div. L (1979)
[12] Chen, W.; Wang, F.; Kitamura, T.; Feng, M., A modified unified viscoplasticity model considering time-dependent kinematic hardening for stress relaxation with effect of loading history, Int. J. Mech. Sci., 133, 883-892 (2017)
[13] Desmorat, R.; Otin, S., Cross-identification isotropic/anisotropic damage and application to anisothermal structural failure, Eng. Fract. Mech., 75, 3446-3463 (2008)
[14] Frederick, C. O.; Armstrong, P. J., A mathematical representation of the multiaxial Bauschinger effect. Mater, High Temp., 24, 1-26 (2007)
[15] Hasselqvist, M., Viscoplastic modelling for industrial gas turbine (IGT) application with emphasis on the Sheet material Haynes 230, (Turbo Expo 2002, Parts A and B. ASME, vol. 3 (2002)), 1229-1233, Amsterdam
[16] Hosseini, E.; Holdsworth, S. R.; Kühn, I.; Mazza, E., Temperature dependent representation for Chaboche kinematic hardening model, Mater. A. T. High. Temp., 32, 404-411 (2015)
[17] Huang, J.; Shi, D. Q.; Yang, X. G.; Yu, H. C.; Dong, C. L., Unified modeling of high temperature deformations of a Ni-based polycrystalline wrought superalloy under tension-compression, cyclic, creep and creep-fatigue loadings, Sci. China Technol. Sci., 58, 248-257 (2014)
[18] Khutia, N.; Dey, P. P.; Hassan, T., An improved nonproportional cyclic plasticity model for multiaxial low-cycle fatigue and ratcheting responses of 304 stainless steel, Mech. Mater., 91, 12-25 (2015)
[19] Klarstrom, D. L., Haynes 230. Aerosp. high perform. Alloy. Database (2009)
[20] Krishna, S.; Hassan, T.; Ben Naceur, I.; Saï, K.; Cailletaud, G., Macro versus micro-scale constitutive models in simulating proportional and nonproportional cyclic and ratcheting responses of stainless steel 304, Int. J. Plast., 25, 1910-1949 (2009)
[21] Kruizenga, A. M.; Gill, D. D.; Laford, M.; Mcconohy, G., Corrosion of High Temperature Alloys in Solar Salt at 400, 500, and 680°C (2013), California: California Livermore
[22] Lagamine code
[23] Lata, J. M.; Rodríguez, M.; de Lara, M. A., High flux central receivers of molten salts for the new generation of commercial Stand-alone solar power plants, J. Sol. Energy Eng., 130 (2008), 021002
[24] Liu, B.; Wei, X.; Wang, W.; Lu, J.; Ding, J., Corrosion behavior of Ni-based alloys in molten NaCl-CaCl2-MgCl2eutectic salt for concentrating solar power. Sol. Energy Mater. Sol, Cells, 170, 77-86 (2017)
[25] Logie, W. R.; Pye, J. D.; Coventry, J., Thermoelastic stress in concentrating solar receiver tubes: a retrospect on stress analysis methodology, and comparison of salt and sodium. Sol, Energy, 160, 368-379 (2018)
[26] Maier, G.; Riedel, H.; Nieweg, B.; Somsen, C.; Eggeler, G.; Klöwer, J.; Mohrmann, R., Cyclic deformation and lifetime of Alloy 617B during thermo-mechanical fatigue, Mater. A. T. High. Temp., 30, 27-35 (2013)
[27] Morch, H.; Duchene, L.; Habraken, A. M., Identification method of an advanced constitutive law for nickel-based alloy Haynes 230 used in solar receivers, J. Phys. Conf. Ser, 1063 (2018)
[28] Morris, D. G.; López-Delgado, A.; Padilla, I.; Muñoz-Morris, M. A., Selection of high temperature materials for concentrated solar power systems: property maps and experiments, Sol. Energy, 112, 246-258 (2015)
[29] Novello, F.; Dedry, O.; De Noose, V.; Lecomte-Beckers, J., High temperature corrosion resistance of metallic materials in Harsh conditions, in: proceedings of the 10th conference on materials for advanced power engineering 2014 (2014)
[30] Ohno, N.; Takahashi, Y.; Kuwabara, K., Constitutive modeling of anisothermal cyclic plasticity of 304 stainless steel, J. Eng. Mater. Technol., 111, 106 (1989)
[31] Rodríguez Sanchez, M. R.; Venegas Bernal, M.; Marugán Cruz, C.; Santana, D., Thermal, mechanical and hydrodynamic analysis to optimize the design of molten salt central receivers of solar tower power plants, in: international Conference on Renewable Energies and Power Quality (2013), 128, 133
[32] Tong, J.; Zhan, Z. L.; Vermeulen, B., Modelling of cyclic plasticity and viscoplasticity of a nickel-based alloy using Chaboche constitutive equations, Int. J. Fatig., 26, 829-837 (2004)
[33] Veverkova, J.; Strang, A.; Marchant, G. R.; Mccolvin, G. M.; Atkinson, H. V., High temperature microstructural Degradation of Haynes alloy 230, Superalloys, 479-488 (2008)
[34] Wang, C.; Shi, D.; Yang, X.; Li, S.; Dong, C., An improved viscoplastic constitutive model and its application to creep behavior of turbine blade, Mater. Sci. Eng. A, 707, 344-355 (2017)
[35] Yaguchi, M.; Yamamoto, M.; Ogata, T., A viscoplastic constitutive model for nickel-base superalloy, part 2: modeling under anisothermal conditions, Int. J. Plast., 18, 1111-1131 (2002) · Zbl 1071.74007
[36] Yang, Xiaoping; Yang, Xiaoxi; Ding, J.; Shao, Y.; Fan, H., Numerical simulation study on the heat transfer characteristics of the tube receiver of the solar thermal power tower, Appl. Energy, 90, 142-147 (2012)
[37] Zhan, Z. L.; Tong, J., A study of cyclic plasticity and viscoplasticity in a new nickel-based superalloy using unified constitutive equations. Part I: evaluation and determination of material parameters, Mech. Mater., 39, 64-72 (2007)
[38] Zheng, X.; Wang, W.; Guo, S.; Xuan, F., Viscoplastic constitutive modelling of the ratchetting behavior of 35CrMo steel under cyclic uniaxial tensile loading with a wide range of stress amplitude, Eur. J. Mech. Solid., 76, 312-320 (2019) · Zbl 1472.74033
[39] Zhou, C.; Chen, Z.; Lee, J. W.; Lee, M. G.; Wagoner, R. H., Implementation and application of a temperature-dependent Chaboche model, Int. J. Plast., 75, 121-140 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.