Modeling of resonant magnetoelectric response in press-fit embedded ring composite. (English) Zbl 1476.74035

Summary: Magnetoelectric (ME) effect is a product property arising out of the interactions between the piezoelectric and the magnetostrictive phase. Multi-phase ME composites being multifunctional materials find use in myriad of applications. In this work, epoxy free two phase and three phase embedded ring ME composites have been fabricated by the press-fit technique. For a comparative study, three phase conventional epoxy bonded ring shaped composite of same dimensions have also been fabricated. Dynamic ME experiment has been conducted at room and elevated temperatures on all the prepared composites. It is shown that the epoxy free composite by virtue of the absence of epoxy shows a better resonant ME response at all temperatures. The significance of the Electromechanical Resonance (EMR) in the resonance behavior of the composites has also been highlighted. An analytical model in cylindrical coordinate system incorporating the temperature effects on the individual composite constituents and their interface coupling has been developed based on the concentric ring approach to predict the dynamic ME behavior of the epoxy free ring composite at different temperatures. The model has been further used to study the effect of volume fraction of the constituents on the ME response.


74F15 Electromagnetic effects in solid mechanics
74E30 Composite and mixture properties
74F05 Thermal effects in solid mechanics
74H45 Vibrations in dynamical problems in solid mechanics
74-05 Experimental work for problems pertaining to mechanics of deformable solids
Full Text: DOI


[1] ANSI/IEEE Std 176-1987 (1987), Ieee standard on piezoelectricity
[2] Bichurin, M. I.; Petrov, V. M., Modeling of magnetoelectric interaction in magnetostrictive-piezoelectric composites, Adv. Condens. Matter Phys., 2012 (2012)
[3] Bichurin, M. I.; Filippov, D. A.; Petrov, V. M.; Laletsin, V. M.; Paddubnaya, N.; Srinivasan, G., Resonance magnetoelectric effects in layered magnetostrictive-piezoelectric composites, Phys. Rev. B, 68, 13, 132408 (2003)
[4] Bichurin, M. I.; Petrov, V. M.; Ryabkov, O. V.; Averkin, S. V.; Srinivasan, G., Theory of magnetoelectric effects at magnetoacoustic resonance in single-crystal ferromagnetic-ferroelectric heterostructures, Phys. Rev. B, 72, 6, Article 060408 pp. (2005)
[5] Bichurin, M. I.; Petrov, V. M.; Averkin, S. V.; Filippov, A. V., Electromechanical resonance in magnetoelectric layered structures, Phys. Solid State, 52, 10, 2116-2122 (2010)
[6] Bichurin, Mirza; Petrov, Vladimir; Priya, Shashank; Bhalla, Amar, Multiferroic magnetoelectric composites and their applications, Adv. Condens. Matter Phys., 2012 (2012)
[7] Burdin, Dmitrii; Ekonomov, Nikolai; Chashin, Dmitrii; Fetisov, Leonid; Fetisov, Yuri; Shamonin, Mikhail, Temperature dependence of the resonant magnetoelectric effect in layered heterostructures, Materials, 10, 10, 1183 (2017)
[8] Chashin, D. V.; Fetisov, Y. K.; Kamentsev, K. E.; Srinivasan, G., Resonance magnetoelectric interactions due to bending modes in a nickel-lead zirconate titanate bilayer, Appl. Phys. Lett., 92, 10, 102511 (2008)
[9] Chen, W. Q.; Zhou, Y. Y.; CF Lü; Ding, H. J., Bending of multiferroic laminated rectangular plates with imperfect interlaminar bonding, Eur. J. Mech. Solid., 28, 4, 720-727 (2009) · Zbl 1167.74483
[10] Cheong, Sang-Wook; Mostovoy, Maxim, Multiferroics: a magnetic twist for ferroelectricity, Nat. Mater., 6, 1, 13 (2007)
[11] Chu, Zhaoqiang; PourhosseiniAsl, MohammadJavad; Dong, Shuxiang, Review of multi-layered magnetoelectric composite materials and devices applications, J. Phys. Appl. Phys., 51, 24, 243001 (2018)
[12] Chung, Ming Leung; Li, Jiefang; Viehland, D.; Zhuang, X., A review on applications of magnetoelectric composites: from heterostructural uncooled magnetic sensors, energy harvesters to highly efficient power converters, J. Phys. Appl. Phys., 51, 26, 263002 (2018)
[13] Elakkiya, V. Sai; Subhani, Sk M.; Arockiarajan, A., A phenomenological approach to study the nonlinear magnetoelectric (me) response of me composites, Smart Mater. Struct., 29, 1, Article 015010 pp. (2019)
[14] esmat, a10, 1, 1 (2019)
[15] Filippov, D. A., Theory of magnetoelectric effect in ferromagnetic-piezoelectric bilayer structures, Tech. Phys. Lett., 30, 12, 983-986 (2004)
[16] Ge, X. H.; Ji, H.; Li, Y.; Chen, J. K.; Wang, Y. G., Diameter and sequence effects on magnetoelectric effect in feco/pb (zr, ti) o3/ni trilayered long cylindrical composite structures, J. Alloys Compd., 752, 303-307 (2018)
[17] George, Youssef; Lopez, Mario; Scott, Newacheck, On the effect of polarization direction on the converse magnetoelectric response of multiferroic composite rings, Smart Mater. Struct., 26, 3, Article 037003 pp. (2017)
[18] George, Youssef; Nacy, Somer; Scott, Newacheck, Dynamic magnetoelectric response of composite multiferroics cylinders, Smart Mater. Struct., 29, 3, Article 035025 pp. (2020)
[19] George, Youssef; Scott, Newacheck; Louay, S. Yousuf, Insights into the displacement field in magnetoelectric composites, J. Intell. Mater. Syst. Struct., 31, 3, 436-444 (2020)
[20] Hadjiloizi, D. A.; Georgiades, A. V.; Al, Kalamkarov; Jothi, S., Micromechanical modeling of piezo-magneto-thermo-elastic composite structures: Part i-theory, Eur. J. Mech. Solid., 39, 298-312 (2013) · Zbl 1348.74268
[21] Hadjiloizi, D. A.; Georgiades, A. V.; Al, Kalamkarov; Jothi, S., Micromechanical modeling of piezo-magneto-thermo-elastic composite structures: Part ii-applications, Eur. J. Mech. Solid., 39, 313-327 (2013) · Zbl 1348.74269
[22] Hong, H.; Bi, K.; Wang, Y. G., Magnetoelectric performance in ni/pb (zr, ti) o3/feco trilayered cylindrical composites, J. Alloys Compd., 545, 182-185 (2012)
[23] Hooker, M. W., Properties of Pzt-Based Piezoelectric Ceramics between- 150 and 250° C NASA (1998), Technical report, CR-1998-208708
[24] Jing, W. Q.; Fang, F., Stress-induced self-biasing of magnetoelectric coupling in embedded ni/pzt/feni composite, Appl. Phys. Lett., 106, 21, 212901 (2015)
[25] Kumar, Amritesh; Arockiarajan, A., Temperature dependent magnetoelectric (me) response in press-fit feni/pzt/ni self-biased ring composite, J. Appl. Phys., 126, 9, Article 094102 pp. (2019)
[26] Kumar, Amritesh; Chelvane, J. Arout; Arunachalakasi, Arockiarajan, Temperature dependent dynamic response in epoxy-free and epoxy-bonded me composite: a comparative study, Smart Mater. Struct. (2020)
[27] Kuo, Hsin-Yi; Wu, Tien-Jung; Pan, Ernian, Multilayer multiferroic composites with imperfect interfaces, Smart Mater. Struct., 27, 7, Article 075032 pp. (2018)
[28] Li, Lei; Qi Lin, Yi; Chen, Xiang Ming, Cofe 2 o 4/pb (zr 052 ti 0.48) o 3 disk-ring magnetoelectric composite structures, J. Appl. Phys., 102, 6, Article 064103 pp. (2007)
[29] Nan, Ce-Wen; Bichurin, M. I.; Dong, Shuxiang; Viehland, D.; Srinivasan, G., Multiferroic magnetoelectric composites: historical perspective, status, and future directions, J. Appl. Phys., 103, 3, 1 (2008)
[30] Palneedi, Haribabu; Annapureddy, Venkateswarlu; Priya, Shashank; Ryu, Jungho, Status and perspectives of multiferroic magnetoelectric composite materials and applications, (Actuators, vol. 5 (2016), Multidisciplinary Digital Publishing Institute), 9
[31] Paluszek, M.; Avirovik, D.; Zhou, Y.; Kundu, S.; Chopra, A.; Montague, R.; Priya, S.; Srinivasan, G.; Priya, S.; Sun, N. X., Magnetoelectric composites for medical application, (Composite Magnetoelectrics (2015)), 297-327
[32] Pan, D. A.; Bai, Y.; Chu, W. Y.; Qiao, L. J., Magnetoelectric effect in a ni-pzt-ni cylindrical layered composite synthesized by electro-deposition, J. Phys. Appl. Phys., 41, 2, Article 022002 pp. (2007)
[33] Pan, D. A.; Bai, Y.; Volinsky, Alex A.; Chu, W. Y.; Qiao, L. J., Giant magnetoelectric effect in ni-lead zirconium titanate cylindrical structure, Appl. Phys. Lett., 92, 5, Article 052904 pp. (2008)
[34] Pan, D. A.; Zhang, S. G.; Tian, J. J.; Sun, J. S.; Volinsky, A. A.; Qiao, L. J., Resonant modes and magnetoelectric performance of pzt/ni cylindrical layered composites, Appl. Phys. A, 98, 2, 449 (2010)
[35] Pan, De’an; Wang, Jiao; Zuo, Zhijun; Zhang, Shengen; Liu, Bo; Volinsky, Alex A.; Qiao, Lijie, Phosphorus content effect on the magnetoelectric properties of the ni-p (ni)/pzt/ni-p (ni) cylindrical layered composites, Mater. Lett., 133, 255-258 (2014)
[36] Petrov, Roman, Magnetoelectric current sensors, Sensors, 17 (2017)
[37] Petrov, V. M.; Srinivasan, G.; Bichurin, M. I.; Galkina, T. A., Theory of magnetoelectric effect for bending modes in magnetostrictive-piezoelectric bilayers, J. Appl. Phys., 105, 6, Article 063911 pp. (2009)
[38] Prellier, W.; Singh, M. P.; Murugavel, P., The single-phase multiferroic oxides: from bulk to thin film, J. Phys. Condens. Matter, 17, 30, R803 (2005)
[39] Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J., Dynamic Characterization of Galfenol (Fe81. 6ga18. 4) (2016), NASA, 218754
[40] Shen, H. Q.; Wang, Y. G., Tunable resonant frequency of feco/pzt/feco cylinders, Int. J. Mod. Phys. B, 27, 28, 1350173 (2013)
[41] Subhani, Sk M.; Arockiarajan, A., Study on axial resonance magento-electric (me) effects of layered magneto-electric composites, Eur. J. Mech. Solid., 103799 (2019) · Zbl 07111001
[42] Subhani, Sk M.; Maniprakash, S.; Arockiarajan, A., Nonlinear magneto-electro-mechanical response of layered magneto-electric composites: theoretical and experimental approach, Acta Mech., 228, 9, 3185-3201 (2017) · Zbl 1381.74093
[43] Sudersan, S.; Arockiarajan, A., Thermal and prestress effects on nonlinear magnetoelectric effect in unsymmetric composites, Compos. Struct., 223, 110924 (2019)
[44] Sudersan, S.; Maniprakash, S.; Arockiarajan, A., Nonlinear magnetoelectric effect in unsymmetric laminated composites, Smart Mater. Struct., 27, 12, 125005 (2018)
[45] Thomas, H. Courtney, Mechanical Behavior of Materials (2005), Waveland Press
[46] Truell, Rohn; Elbaum, Charles; Bruce, B. Chick, Ultrasonic Methods in Solid State Physics (2013), Academic press
[47] Tt Nguyen, R. Abdelmoula; Li, J.; Roussigne, Y.; Stashkevich, A., Wave propagating in multilayers composed of piezo electric and piezo magnetic layers, Compos. B Eng., 93, 289-301 (2016)
[48] Tuan, Anh Do; Talleb, Hakeim; Gensbittel, Aurélie; Ren, Zhuoxiang, 3-d finite element analysis of magnetoelectric composites accounting for material nonlinearity and eddy currents, IEEE Trans. Magn., 55, 10, 1-8 (2019)
[49] Wan, J. G.; Liu, J.-M.; Chand, H. L.W.; Choy, C. L.; Wang, G. H.; Nan, C. W., Giant magnetoelectric effect of a hybrid of magnetostrictive and piezoelectric composites, J. Appl. Phys., 93, 12, 9916-9919 (2003)
[50] Wang, Yang; Xia, Xiaodong; George, J. Weng, Magnetoelectric coupling and interface effects of multiferroic composites under stress-prescribed boundary condition, Rev. Adv. Mater. Sci., 48, 1 (2017)
[51] Wang, Y. J.; Leung, C. M.; Or, S. W.; Zhao, X. Y.; Luo, H. S.; Lv, X. K.; Zhang, Z. D., Magnetoelectric effect in laminates of polymer-based pseudo-1-3 (tb 0.3 dy 0.7) 0.5 pr 0.5 fe 1.55 composite and 0.3 pb (mg 1/3 nb 2/3) o 3-0.7 pbtio 3 single crystal, Appl. Phys. A, 97, 1, 201-204 (2009)
[52] Wang, H. M.; Liu, C. B.; Ding, H. J., Dynamic behavior of piezoelectric/magnetostrictive composite hollow cylinder, Arch. Appl. Mech., 79, 8, 753-771 (2009) · Zbl 1264.74054
[53] Wang, H. M.; Pan, E.; Chen, W. Q., Enhancing magnetoelectric effect via the curvature of composite cylinder, J. Appl. Phys., 107, 9, Article 093514 pp. (2010)
[54] Wang, H. M.; Pan, E.; Chen, W. Q., Large multiple resonance of magnetoelectric effect in a multiferroic composite cylinder with an imperfect interface, Phys. Status Solidi, 248, 9, 2180-2185 (2011)
[55] Wang, Yang; Su, Yu; Li, Jackie; George, J. Weng, A theory of magnetoelectric coupling with interface effects and aspect-ratio dependence in piezoelectric-piezomagnetic composites, J. Appl. Phys., 117, 16, 164106 (2015)
[56] Wei, Yong-kang; Wang, Hui-ming; Zou, Long, Influence of curvature on magnetoelectric effect of three-layered piezoelectric/piezomagnetic composite cylinder, (2012 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA) (2012), IEEE), 137-139
[57] Wu, Gaojian; Zhang, Ru; Li, Xin; Zhang, Ning, Resonance magnetoelectric effects in disk-ring (piezoelectric-magnetostrictive) composite structure, J. Appl. Phys., 110, 12, 124103 (2011)
[58] Xu, L. R.; Pan, D. A.; Zuo, Z. J.; Wang, J.; Volinsky, A. A.; Qiao, L. J., Multi-electrode pb (zr, tio) 3/ni cylindrical layered magnetoelectric composite, Appl. Phys. Lett., 106, 3, Article 032904 pp. (2015)
[59] Xu, Lirong; Yan, Yu; Qiao, Lijie; Wang, Jiao; Pan, De’an; Yang, Song; Volinsky, Alex A., Layer thickness and sequence effects on resonant magnetoelectric coupling in ni/pb (zr, ti) o3 cylindrical composites, Mater. Lett., 185, 13-16 (2016)
[60] Yan, Yongke; Zhou, Yuan; Priya, Shashank, Giant self-biased magnetoelectric coupling in co-fired textured layered composites, Appl. Phys. Lett., 102, 5, Article 052907 pp. (2013)
[61] Zhang, Ru; Wu, Gaojian; Zhang, Ning, Equivalent circuit method for resonant magnetoelectric effect in disk-shaped laminated composites, Eur. Phys. J. Appl. Phys., 69, 1, 10602 (2015)
[62] Zheng, Xuqian, Lead Zirconate Titanate Piezoelectric Cantilevers For Multimode Vibrating Microelectromechanical Systems. PhD Thesis (2015), Case Western Reserve University
[63] Zheng, X. J.; Liu, X. E., A nonlinear constitutive model for terfenol-d rods, J. Appl. Phys., 97, 5, Article 053901 pp. (2005)
[64] Zheng, Xiao Jing; Le Sun, A nonlinear constitutive model of magneto-thermo-mechanical coupling for giant magnetostrictive materials, J. Appl. Phys., 100, 6, Article 063906 pp. (2006)
[65] Zhou, Hao-Miao; Ou, Xiao-Wei; Xiao, Ying; Qu, Shao-Xing; Wu, Hua-Ping, An analytical nonlinear magnetoelectric coupling model of laminated composites under combined pre-stress and magnetic bias loadings, Smart Mater. Struct., 22, 3, Article 035018 pp. (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.