×

Coexisting attractors, circuit implementation and synchronization control of a new chaotic system evolved from the simplest memristor chaotic circuit. (English) Zbl 1476.94060

Summary: This paper reports a new chaotic system generated from the simplest memristor chaotic circuit by introducing a simple nonlinear feedback control input. The principal feature of the new system is that it has infinitely many equilibria and abundant coexisting attractors. The dynamic evolution of the system with respect to parameters and initial conditions is given to illustrate the existence of chaos and coexisting attractors. The circuit implementation is done for demonstrating the physical existence of the system. A microcontroller on Arduino Mega 2650 board is used to realize the system. Also the synchronization problem of the system is analyzed with the establishment of synchronization conditions based on the sliding mode control.

MSC:

94C05 Analytic circuit theory
34C28 Complex behavior and chaotic systems of ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lorenz, E. N., Deterministic non-periodic flow, J Atmos Sci, 20, 130-141 (1963) · Zbl 1417.37129
[2] Sprott, J. C., Some simple chaotic flows, Phys Rev E, 50, 647-650 (1994)
[3] Jafari, S.; Sprott, J. C., Simple chaotic flows with a line equilibrium, Chaos, Solit Fract, 57, 79-84 (2013) · Zbl 1355.37056
[4] Chen, G.; Ueta, T., Yet another chaotic attractor, Int J Bifur Chaos, 9, 1465-1466 (1999) · Zbl 0962.37013
[5] Gotthans, T.; Petrzela, J., New class of chaotic systems with circular equilibrium, Nonlinear Dyn, 81, 1143-C1149 (2015)
[6] Bao, B. C.; Zhou, G. H.; Xu, J. P.; Liu, Z., Multiscroll chaotic attractors from a modified colpitts oscillator model, Int J Bifur Chaos, 20, 2203-2211 (2010) · Zbl 1196.34053
[7] Rajagopal, K.; Akgul, A.; Moroz, I.; Hussain, I.; Zhouchao, W.; Jafari, S., A simple chaotic system with topologically different attractors, IEEE Access, 7, 89936-89947 (2019)
[8] Pham, V. T.; Volos, C.; Vaidyanathan, S.; Wang, X., A chaotic system with an infinite number of equilibrium points: dynamics, horseshoe, and synchronization, Adva Math Phys, 2016, 4024836 (2016) · Zbl 1382.37035
[9] Li, C. B.; Sprott, J. C., Multistability in a butterfly flow, Int J Bifur Chaos, 23, 1350199 (2013) · Zbl 1284.34060
[10] Li, C. B.; Sprott, J. C., Coexisting hidden attractors in a 4-d simplified lorenz system, Int J Bifur Chaos, 24, 1450034 (2014) · Zbl 1296.34111
[11] Kengne, J.; Njitacke, Z. T.; Fotsin, H. B., Dynamical analysis of a simple autonomous jerk system with multiple attractors, Nonlinear Dyn, 83, 751-765 (2016)
[12] Pham, V. T.; Volos, C.; Jafari, S.; Kapitaniak, T., Coexistence of hidden chaotic attractors in a novel no-equilibrium system, Nonlinear Dyn, 87, 2001-2010 (2017)
[13] Bao, B. C.; Li, Q. D.; Wang, N.; Xu, Q., Multistability in Chua’s circuit with two stable node-foci, Chaos, 26, 043111 (2016)
[14] Bao, B. C.; Bao, H.; Wang, N.; Chen, M.; Xu, Q., Hidden extreme multistability in memristive hyperchaotic system, Chaos Solit Fract, 94, 102-111 (2017) · Zbl 1373.34069
[15] Bao, B. C.; Wang, N.; Xu, Q.; Wu, H.; Hu, Y., A simple third-order memristive band pass filter chaotic circuit, IEEE Trans Circ Syst-II, 64, 977-981 (2017)
[16] Lai, Q.; Chen, S., Generating multiple chaotic attractors from Sprott B system, Int J Bifur Chaos, 26, 1650177 (2016) · Zbl 1349.34161
[17] Li, C. B.; Thio, W. J.C.; Sprott, J. C.; Iu, H. H.C.; Xu, Y., Constructing infinitely many attractors in a programmable chaotic circuit, IEEE Access, 6, 29003-29012 (2018)
[18] Hens, C. R.; Banerjee, R.; Feudel, U.; Dana, S. K., How to obtain extreme multistability in coupled dynamical systems, Phys Rev E, 85, 035202 (2012)
[19] Lai, Q.; Akgul, A.; Li, C. B.; Xu, G.; Cavusoglu, U., A new chaotic system with multiple attractors: dynamic analysis, circuit realization and s-box design, Entropy, 20, 12 (2018)
[20] Lai, Q.; Norouzi, B.; Liu, F., Dynamic analysis, circuit realization, control design and image encryption application of an extended lu system with coexisting attractors, Chaos Solit Fract, 114, 230-245 (2018) · Zbl 1415.34079
[21] Li, C. L.; Li, H.; Li, W.; Tong, Y.; Zhang, J.; Wei, D.; Li, F., Dynamics, implementation and stability of a chaotic system with coexistence of hyperbolic and non-hyperbolic equilibria, AEU-Int J Electr Commun, 84, 199-205 (2018)
[22] Rajagopal, K.; Akgul, A.; Pham, V. T.; Alsaadi, F. E.; Nazarimehr, F.; Alsaadi, F. E.; Jafari, S., Multistability and coexisting attractors in a new circulant chaotic system, Int J Bifur Chaos, 29, 1950174 (2019) · Zbl 1436.34050
[23] Yang, J.; Liu, Z., A novel simple hyperchaotic system with two coexisting attractors, Int J Bifur Chaos, 29, 1950203 (2019) · Zbl 1434.34024
[24] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Phys Rev Lett, 64, 821-824 (1990) · Zbl 0938.37019
[25] Feki, M., An adaptive chaos synchronization scheme applied to secure communication, Chaos Solit Fract, 18, 141-148 (2003) · Zbl 1048.93508
[26] Wang, F.; Liu, C., Synchronization of unified chaotic system based on passive control, Phys D, 225, 55-60 (2007) · Zbl 1119.34332
[27] Huang, D., Simple adaptive-feedback controller for identical chaos synchronization, Phys Rev E, 71, 037203 (2005)
[28] Vaseghi, B.; Pourmina, M. A., Saleh mobayen. finite-time chaos synchronization and its application in wireless sensor networks, Trans Inst Meas Control, 40, 3788-3799 (2018)
[29] Zhou, P.; Zhu, P., A practical synchronization approach for fractional-order chaotic systems, Nonlinear Dyn, 89, 1719-1726 (2017) · Zbl 1375.93054
[30] Tian, K.; Bai, C.; Ren, H. P.; Grebogi, C., Hyperchaos synchronization using univariate impulse control, Phys Rev E, 100, 052215 (2019)
[31] Muthuswamy, B.; Chua, L. O., Simplest chaotic circuit, Int J Bifur Chaos, 20, 1567-1580 (2010)
[32] Kamdem Kuate, P. D.; Lai, Q.; Fotsin, H. B., Dynamics, synchronization and electronic implementations of a new lorenz-like chaotic system with nonhyperbolic equilibria, Int J Bifur Chaos, 29, 1950197 (2019) · Zbl 1443.34019
[33] Rajagopal, K.; Cicek, S.; Pham, V. T.; Jafari, S.; Karthikeyan, A., A novel class of chaotic systems with different shapes of equilibrium and microcontroller-based cost-effective design for digital applications, Eur Phys J Plus, 133, 231 (2018)
[34] Bao, B.; Yang, Q.; Zhu, L.; Bao, H.; Xu, Q.; Yu, Y.; Chen, M., Chaotic bursting dynamics and coexisting multistable firing patterns in 3d autonomous morris-lecar model and microcontroller-based validations, Int J Bifur Chaos, 29, 1950134 (2019) · Zbl 1448.34095
[35] Vaidyanathan, S., Global chaos synchronisation of identical Li-Wu chaotic systems via sliding mode control, Int J Model Ident Control, 22, 170 (2014)
[36] Yau, H. T., Design of adaptive sliding mode controller for chaos synchronization with uncertainties, Chaos Solit Fract, 22, 341-347 (2004) · Zbl 1060.93536
[37] Yan, J.; Yang, Y.; Chiang, T.; Chen, Y., Robust synchronization of unified chaotic systems via sliding mode control, Chaos Solit Fract, 34, 947-954 (2007) · Zbl 1129.93489
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.