×

Sectional algebras of semigroupoid bundles. (English) Zbl 1468.22011

Summary: In this paper, we use semigroupoids to describe a notion of algebraic bundles, mostly motivated by Fell (\(C^\ast\)-algebraic) bundles, and the sectional algebras associated to them. As the main motivational example, Steinberg algebras may be regarded as the sectional algebras of trivial (direct product) bundles. Several theorems which relate geometric and algebraic constructions – via the construction of a sectional algebra – are widely generalized: Direct products bundles by semigroupoids correspond to tensor products of algebras; semidirect products of bundles correspond to “naïve” crossed products of algebras; skew products of graded bundles correspond to smash products of graded algebras; Quotient bundles correspond to quotient algebras. Moreover, most of the results hold in the non-Hausdorff setting. In the course of this work, we generalize the definition of smash products to groupoid graded algebras. As an application, we prove that whenever \(\theta\) is a \(\wedge\)-preaction of a discrete inverse semigroupoid \(S\) on an ample (possibly non-Hausdorff) groupoid \(\mathcal{G}\), the Steinberg algebra of the associated groupoid of germs is naturally isomorphic to a crossed product of the Steinberg algebra of \(\mathcal{G}\) by \(S\). This is a far-reaching generalization of analogous results which had been proven in particular cases.

MSC:

22A22 Topological groupoids (including differentiable and Lie groupoids)
16S40 Smash products of general Hopf actions
16S60 Associative rings of functions, subdirect products, sheaves of rings
18B40 Groupoids, semigroupoids, semigroups, groups (viewed as categories)
16W50 Graded rings and modules (associative rings and algebras)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ara, P., Hazrat, R., Li, H. and Sims, A., Graded Steinberg algebras and their representations, Algebr. Number Theory12(1) (2018) 131-172. · Zbl 1387.22005
[2] Ara, P., Angeles, M., Frías, M. and Pardo, E., Nonstable \(K\)-theory for graph algebras, Algebr. Represent. Theory10(2) (2007) 157-178. · Zbl 1123.16006
[3] K. S. Austin and A. J. Mitra, Groupoid models of \(C^\ast \)-algebras and Gelfand duality, preprint (2018) arXiv:1804.00967 [math.OA].
[4] Beattie, M., A generalization of the smash product of a graded ring, J. Pure Appl. Algebra52(3) (1988) 219-226. · Zbl 0653.16002
[5] Beuter, V. M. and Gonçalves, D., The interplay between Steinberg algebras and skew rings, J. Algebra497 (2018) 337-362. · Zbl 1441.16046
[6] Beuter, V. M., Gonçalves, D., Öinert, J. and Royer, D., Simplicity of skew inverse semigroup rings with applications to Steinberg algebras and topological dynamics, Forum Math.31(3) (2019) 543-562. · Zbl 1452.16040
[7] Buss, A. and Exel, R., Inverse semigroup expansions and their actions on \(C^\ast \)-algebras, Illinois J. Math.56(4) (2012) 1185-1212. · Zbl 1298.46053
[8] Carlsen, T. M. and Rout, J., Diagonal-preserving graded isomorphisms of Steinberg algebras, Commun. Contemp. Math.20(6) (2018) (1750064)1-25. · Zbl 1400.22003
[9] Clark, L. O. and Edie-Michell, C., Uniqueness theorems for Steinberg algebras, Algebr. Represent. Theory18(4) (2015) 907-916. · Zbl 1329.46064
[10] Clark, L. O., Exel, R., Pardo, E., Sims, A. and Starling, C., Simplicity of algebras associated to non-Hausdorff groupoids, Trans. Amer. Math. Soc.372(5) (2019) 3669-3712. · Zbl 1491.16032
[11] Clark, L. O., Farthing, C., Sims, A. and Tomforde, M. L., A groupoid generalisation of Leavitt path algebras, Semigr. Forum89(3) (2014) 501-517. · Zbl 1323.46033
[12] Cohen, M. and Montgomery, S., Group-graded rings, smash products, and group actions, Trans. Amer. Math. Soc.282(1) (1984) 237-258. · Zbl 0533.16001
[13] L. G. Cordeiro, Étale inverse semigroupoids — the fundamentals, preprint (2019), arXiv:1902.09375 [math.DS].
[14] Cordeiro, L. G. and Beuter, V. M., The dynamics of partial inverse semigroup actions, J. Pure Appl. Algebra224(3) (2020) 917-957. · Zbl 1516.20137
[15] Escardó, M. H. and Heckmann, R., Topologies on spaces of continuous functions, Topology Proc.26(2) (2001) 545-564. · Zbl 1083.54009
[16] Exel, R., Circle actions on \(C^\ast \)-algebras, partial automorphisms, and a generalized Pimsner-Voiculescu exact sequence, J. Funct. Anal.122(2) (1994) 361-401. · Zbl 0808.46091
[17] Exel, R., Inverse semigroups and combinatorial \(C^\ast \)-algebras, Bull. Braz. Math. Soc. (N. S)39(2) (2008) 191-313. · Zbl 1173.46035
[18] Exel, R. and Vieira, F., Actions of inverse semigroups arising from partial actions of groups, J. Math. Anal. Appl.363(1) (2010) 86-96. · Zbl 1192.46062
[19] Fell, J. M. G., An Extension of Mackey’s Method to Banach ∗-Algebraic Bundles, , Vol. 90 (American Mathematical Society, 1969). · Zbl 0194.44301
[20] Fell, J. M. G., Representations of ∗-Algebras, Locally Compact Groups, and Banach ∗-Algebraic Bundles, Vol. 2, , Vol. 126 (Academic Press, 1988). · Zbl 0652.46050
[21] Giordano, T., Putnam, I. F. and Skau, C. F., Topological orbit equivalence and \(C^\ast \)-crossed products, J. Reine Angew. Math.469 (1995) 51-111. · Zbl 0834.46053
[22] Giordano, T., Putnam, I. F. and Skau, C. F., Full groups of Cantor minimal systems, Israel J. Math.111(1) (1999) 285-320. · Zbl 0942.46040
[23] Godement, R., Sur la théorie des représentations unitaires, Ann. Math.53(1) (1951) 68-124. · Zbl 0042.34606
[24] R. Hazrat and H. Li, Homology of étale groupoids, a graded approach, preprint (2018), arXiv:1806.03398 [math.KT].
[25] Kaplansky, I., The structure of certain operator algebras, Trans. Amer. Math. Soc.70(2) (1951) 219-255. · Zbl 0042.34901
[26] Kelarev, A., Semisimple rings graded by inverse semigroups, J. Algebra205(2) (1998) 451-459. · Zbl 0910.16024
[27] Kumjian, A. A., Fell bundles over groupoids, Proc. Amer. Math. Soc.126(4) (1998) 1115-1125. · Zbl 0891.46038
[28] Lawson, M. V. and Lenz, D., Pseudogroups and their étale groupoids, Adv. Math.244 (2013) 117-170. · Zbl 1311.20059
[29] V. Liu, Free inverse semigroupoids and their inverse subsemigroupoids, Ph.D. thesis, University of Alabama (2016), p. 85.
[30] Lundström, P., Crossed product algebras defined by separable extensions, J. Algebra283(2) (2005) 723-737. · Zbl 1070.16020
[31] Marín, V. and Pinedo, H., Partial groupoid actions on R-categories: Globalization and the smash product, J. Algebra Appl. (2019). https://doi.org/10.1142/S0219498820500838. · Zbl 1464.18011
[32] McClanahan, K. P., \(K\)-theory for partial crossed products by discrete groups, J. Funct. Anal.130(1) (1995) 77-117. · Zbl 0867.46045
[33] Munn, W. D., Rings graded by inverse semigroups, in Semigroups (World Scientific, 2000), pp. 136-145. · Zbl 0982.16032
[34] Năstăasescu, C. and Van Oystaeyen, F., Methods of Graded Rings, , Vol. 1836 (Springer, 2004). · Zbl 1043.16017
[35] Nystedt, P. and Öinert, J., Simple semigroup graded rings, J. Algebra Appl.14(7) (2015) (1550102)1-10. · Zbl 1336.16050
[36] Paterson, A. L. T., Groupoids, Inverse Semigroups, and their Operator Algebras, , Vol. 170 (Birkhäuser, 1999). · Zbl 0913.22001
[37] Quinn, D., Group-graded rings and duality, Trans. Amer. Math. Soc.292(1) (1985) 155-167. · Zbl 0584.16001
[38] Rigby, S. W., Tensor products of Steinberg algebras, J. Aust. Math. Soc. (2019). https://doi.org/10.1017/S1446788719000302. · Zbl 1482.16046
[39] Rudin, W., Real and Complex Analysis, 3rd edn., , (McGraw-Hill, 1987). · Zbl 0925.00005
[40] Shaoxue, L. and Van Oystaeyen, F., Group graded rings, smash products and additive categories, in Perspectives in Ring Theory (Springer, 1988), pp. 299-310. · Zbl 0691.16002
[41] Sieben, N., \( C^\ast \)-crossed products by partial actions and actions of inverse semigroups, J. Aust. Math. Soc.63(1) (1997) 32-46. · Zbl 0892.46071
[42] Steinberg, B., A groupoid approach to discrete inverse semigroup algebras, Adv. Math.223(2) (2010) 689-727. · Zbl 1188.22003
[43] Steinberg, B., Modules over étale groupoid algebras as sheaves, J. Aust. Math. Soc.97(3) (2014) 418-429. · Zbl 1333.22001
[44] Steinberg, B., Diagonal-preserving isomorphisms of étale groupoid algebras, J. Algebra518 (2019) 412-439. · Zbl 1467.20083
[45] Tilson, B. R., Categories as algebra: An essential ingredient in the theory of monoids, J. Pure Appl. Algebra48(1-2) (1987) 83-198. · Zbl 0627.20031
[46] Tomforde, M. L., Uniqueness theorems and ideal structure for Leavitt path algebras, J. Algebra318(1) (2007) 270-299. · Zbl 1132.46035
[47] Tomforde, M. L., Leavitt path algebras with coefficients in a commutative ring, J. Pure Appl. Algebra215(4) (2011) 471-484. · Zbl 1213.16010
[48] von Neumann, J., On rings of operators. Reduction theory, Ann. Math.50(2) (1949) 401. · Zbl 0034.06102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.