zbMATH — the first resource for mathematics

A meshless generalized finite difference method for 2D elasticity problems. (English) Zbl 1464.74364
Summary: In this paper, a meshless generalized finite difference (FD) method is developed and presented for solving 2D elasticity problems. Different with other types of generalized FD method (GFDM) commonly constructed with moving least square (MLS) or radial basis function (RBF) shape functions, the present method is developed based upon B-spline based shape function. The method is a truly meshless approach. Key aspects attributed to the method are: B-spline basis functions augmented with polynomials are employed to construct its shape function. This allows B-splines with lower order to be chosen for the approximation and keeping the efficiency of computation related to tensor product operation of B-spline basis functions. In addition, as distribution of stencil nodes affects numerical performance of generalized FD method, neighboring nodes from triangle cells surrounding a center node are selected for building the supporting domains. While meeting compact stencil requirement, the selection eliminates necessity for determining appropriate number of supporting nodes or size of supporting domains. As a result, the proposed method shows good numerical approximation and accuracy for 2D elasticity problems. Numerical examples are presented to show the effectiveness of the proposed method for solving several 2D elasticity problems in various geometries.

74S20 Finite difference methods applied to problems in solid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI
[1] Atluri, S. N.; Shen, S. P., The Meshless Local Petrov-Galerkin (MLPG) method (2002), Tech Science Press: Tech Science Press USA · Zbl 1012.65116
[2] Liu, G. R., Meshfree methods: moving beyond the finite element method (2009), CRC Press: CRC Press USA
[3] Gerace, S.; Erhart, K.; Matsumoto, T., A model-integrated localized collocation meshless method for large scale three-dimensional heat transfer problems, Eng Anal Bound Element, 64, 101-110 (2016)
[4] Lucy, L. B., A numerical approach to the testing of the fission hypothesis, Astron ., 82, 1013-1024 (1977)
[5] Gingold, R. A.; Monaghan, J. J., Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon Not R Astron Soc, 181, 375-389 (1977) · Zbl 0421.76032
[6] Chen, J. S.; Hillman, M.; Chi, S. W., Meshfree methods: progress made after 20 years, J Eng Mech, 143, 4 (2017), 04017001-1 - 04017001-38
[7] LeVeque, R. J., Finite Volume Methods for Hyperbolic Problems (2004), Cambridge University Press: Cambridge University Press UK
[8] Liu, G. R.; Gu, Y. T., An Introduction to Meshfree Methods and Their Programming (2005), Springer: Springer The Netherlands
[9] Pepper, D. W.; Kassab, A. J.; Divo, E. A., An Introduction to Finite Element, Boundary Element, and Meshless Methods with Applications to Heat Transfer and Fluid Flow (2014)
[10] Rahideh, H.; Malekzadeh, P.; Haghighi, M. R.G.; Vaghefi, M., Two-dimensional inverse transient heat conduction analysis of laminated functionally graded circular plates, Numer Heat Transfer, 62, 992-1014 (2012), Part A
[11] Yu, G. X.; Sun, J.; Wang, H. S.; Wena, P. H.; Rose, J. W., Meshless inverse method to determine temperature and heat flux at boundaries for 2D steady-state heat conduction problems, Exp Thermal Fluid Sci, 52, 156-163 (2014)
[12] Jensen, P. S., Finite difference techniques for variable grids, Comput Struct, 2, 17-29 (1972)
[13] Perrones, N.; Kao, R., A general finite difference method for arbitrary meshes, Comput Struct, 5, 45-58 (1975)
[14] Liszka, T.; Orkisz, J., The finite difference method at arbitrary irregular grids and its application in applied mechanics, Comput Struct, 11, 83-95 (1980) · Zbl 0427.73077
[15] Liszka, T., An interpolation method for an irregular net of nodes, Int J Numer Method Eng, 20, 1599-1612 (1984) · Zbl 0544.65006
[16] Benito, J. J.; Urena, F.; Gavete, L., Influence of several factors in the generalized finite difference method, Appl Math Modell, 25, 1039-1053 (2001) · Zbl 0994.65111
[17] Benito, JJ.; Urena, F.; Gavete, L.; Alvarez, R., An h-adaptive method in the generalized finite differences, Comput Method Appl Mech Eng, 192, 735-759 (2003) · Zbl 1024.65099
[18] Gavete, L.; Gavete, M. L.; Benito, JJ., Improvements of generalized finite difference method and comparison with other meshless method, Appl Math Modell, 27, 831-847 (2003) · Zbl 1046.65085
[19] Seibold, B. (2013), “Minimal positive stencils in meshfree finite difference methods for the poisson equation, arXiv:0802.2674v2, pp. 1-26.
[20] Milewski, S., Meshless finite difference method with higher order approximation-applications in mechanics, Arch Comput Method Eng, 19, 1-49 (2012) · Zbl 1354.74313
[21] Kamyabi, A.; Kermani, V.; Kamyabi, M., Improvements to the meshless generalized finite difference method, Eng Anal Bound Element, 99, 233-243 (2019) · Zbl 1464.65160
[22] Gu, Y.; Qu, W. Z.; Chen, W.; Song, L.; Zhang, C., The generalized finite difference method for long-time dynamic modelingof three-dimensional coupled thermoelasticity problems, J Comput Phys, 384, 42-59 (2019)
[23] Lei, J.; Xu, Y.; Gu, Y.; Fan, C. M., The generalized finite difference method for in-plane crack problems, Eng Anal Bound Element, 98, 147-156 (2019) · Zbl 1404.74194
[24] Hardy, R. L., Multiquadric equations of topography and other irregular surfaces, J Geophys Res, 76, 8, 1905-1915 (1971)
[25] Franke, R., Scattered data interpolation: tests of some methods, MathComput, 38, 181-199 (1982) · Zbl 0476.65005
[26] Kansa, E. J., Multiquadric—a scattered data approximation scheme with applications to computational fluid dynamics II, Comput Math Appl, 19, Nos 8/9, 147-161 (1990) · Zbl 0850.76048
[27] Fasshauer, G. E., Solving partial differential equations by collocation with radial basis functions, (Mehaute, A. L.; Rabut, C.; Schumaker, L. L., Surface fitting and multiresolution methods (1997)), 131-138 · Zbl 0938.65140
[28] Tolstykh, A. I.; Shirobokov, D. A., On using radial basis functions in a ‘“finite difference mode”’ with applications to elasticity problems, ComputMech, 33, 68-79 (2003) · Zbl 1063.74104
[29] Shu, C.; Ding, H.; Yeo, K. S., Local radial basis function-based differential quadrature method and its application to solve two dimensional incompressible Navier-Stokes equations, Comput Method Appl Mech Eng, 192, 941-954 (2003) · Zbl 1025.76036
[30] Bellman, R. E.; Kashef, B. G.; Casti, J., Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations, J Comput Phys, 10, 40-52 (1972) · Zbl 0247.65061
[31] Quan, J. R.; Chang, C. T., “New insights in solving distributed system equations by the quadrature methods-I”, Comput Chem Eng, 13, 7, 779-788 (1989)
[32] Shu, C., Differential quadrature and its application in engineering (2000), Springer-Verlag: Springer-Verlag London · Zbl 0944.65107
[33] Shan, Y. Y.; Shu, C.; Qin, N., Multiquadric finite diference (MQ-FD) method and its application, Adv Appl Math Mech, 1, 615-638 (2009)
[34] Fornberg, B.; Lehto, E.; Powell, C., Stable calculation of Gaussian-based RBF-FD stencils, Comput Math Appl, 65, 627-637 (2013) · Zbl 1319.65011
[35] Mishra, P. K.; Fasshauer, G. E.; Sen, M. K.; Ling, L., A stabilized radial basis-finite difference (RBF-FD) method with hybrid kernels, Comput Math Appl, 77, 2354-2368 (2019)
[36] Schaback, R., Error estimates and condition numbers for radial basis function interpolation, Adv Comput Math, 3, 251-264 (1995) · Zbl 0861.65007
[37] Cheng, A. H.D., Multiquadric and its shape parameter-A numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation, Eng Anal Bound Element, 36, 220-239 (2012) · Zbl 1245.65162
[38] Buhmann, M. D., Radial Basis Functions: Theory and Implementations (2004), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 1038.41001
[39] Chan, Y. L.; Shen, L. H.; Wu, C. T.; Young, D. L., A novel upwind-based local radial basis function differential quadrature method for convection-dominated flows, Comput Fluids, 89, 157-166 (2014) · Zbl 1391.76529
[40] Cui, X. Y.; Liu, G. R.; Li, G. Y.; Zhang, G. Y., A thin plate formulation without rotation DOFs based on the radial point interpolation method and triangular cells, Int J Numer Method Eng, 85, 958-986 (2011) · Zbl 1217.74143
[41] Bourantas, G. C.; Mountris, K. A.; Loukopoulos, V. C.; Lavier, L.; Joldes, G. R.; Wittek, A., Strong-form approach to elasticity: hybrid Finite Difference-Meshless Collocation Method (FDMCM), Appl Math Modell, 57, 316-338 (2018) · Zbl 07166734
[42] Liu, G. R.; Zhang, J.; Li, H.; Lam, K. Y.; Kee, B. B.T., Radial point interpolation based finite difference method for mechanics problems, Int J Numer Method Eng, 68, 728-754 (2006) · Zbl 1129.74049
[43] Wang, J. G.; Liu, G. R., A point interpolation meshless method based on radial basis functions, Int J Numer Method Eng, 54, 1623-1648 (2002) · Zbl 1098.74741
[44] Stevens, D.; Power, H.; Cliffe, K. A., A solution to linear elasticity using locally supported RBF collocation in a generalised finite-difference mode, Eng Anal Bound Element, 37, 32-41 (2013) · Zbl 1351.74160
[45] Flyer, N.; Fornberg, B.; Bayona, V.; Barnett, G. A., On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy, J Comput Phys, 321, 21-38 (2016) · Zbl 1349.65642
[46] Bayona, V., An insight into RBF-FD approximations augmented with polynomials, Comput Math Appl, 77, 2337-2353 (2019)
[47] Tsai, C. I.; Guan, Y. L.; Batra, R. C.; Ohanehi, D. C.; Dillard, J. G.; Nicoli, E., Comparison of the performance of SSPH and MLS basis functions for two-dimensional linear elastostatics problems including quasistatic crack propagation, Comput Mech, 51, 19-34 (2013)
[48] de Boor, C., A Practical Guide to Splines (2001), Springer: Springer New York, revised ed · Zbl 0987.65015
[49] Farin, G., Curves and Surfaces for Computer Aided Geometric Design (2002), Academic Press: Academic Press San Diego, CA
[50] Piegl, L.; Tiller, W., The NURBS book (1995), Springer: Springer New York · Zbl 0828.68118
[51] Liew, K. M.; Zou, G. P.; Rajendran, S., A spline strip kernel particle method and its application to two-dimensional elasticity problems, Int J Numer Method Eng, 57, 599-616 (2003) · Zbl 1062.74659
[52] Shaw, A.; Roy, D., A NURBS-based error reproducing kernel method with applications in solid mechanics, Comput Mech, 40, 127-148 (2007) · Zbl 1187.74260
[53] Shaw, A.; Banerjee, B.; Roy, D., A NURBS-based parametric method bridging mesh-free and finite element formulations, CMES, 26, 1, 31-57 (2008) · Zbl 1232.65149
[54] Zhang, H.; Wang, D., “Reproducing kernel formulation of B-spline and NURBS basis functions: A meshfree local refinement strategy for isogeometric analysis”, Comput Method Appl Mech Eng, 320, 474-508 (2017) · Zbl 1439.65202
[55] Wang, Q.; Zhou, W.; Cheng, Y.; Ma, G.; Chang, X., “NURBS-enhanced line integration boundary element method for 2D elasticity problems with body forces”, Eng Anal Bound Element, 77, 7, 2006-2028 (2019)
[56] Markous, N. A., “Boundary mesh free method with distributed sources for 2D elasticity problems”, Eng Anal Bound Element, 100, 95-100 (2019) · Zbl 1464.74298
[57] Huang, Z.; Lei, D.; Huang, D.; Lin, J.; Han, Z., “Boundary moving least square method for 2D elasticity problems”, Eng Anal Bound Element, 106, 505-512 (2019) · Zbl 1464.74281
[58] Zhou, J.; Wang, K.; Li, P., “A hybrid fundamental-solution-based 8-node element for axisymmetric elasticity problems”, Eng Anal Bound Element, 101, 297-309 (2019) · Zbl 1464.74424
[59] Zhang, B.; Zhao, J.; Yang, Y.; Chen, S., “The nonconforming virtual element method for elasticity problems”, J Comput Phys, 378, 394-410 (2019) · Zbl 1416.74092
[60] Hidayat, M. I.P.; Wahjoedi, B. A.; Parman, S., A new meshless local B-spline basis functions-FD method for two-dimensional heat conduction problems, Int J Numer Method Heat Fluid Flow, 25, 2, 225-251 (2015) · Zbl 1356.80064
[61] Hidayat, M. I.P.; Wahjoedi, B. A.; Parman, S.; Irawan, S., A meshfree approach for transient heat conduction analysis of nonlinear functionally graded materials, Int J Comput Methods, 15, 2 (2018), 1850007-1 - 1850007-34 · Zbl 1404.74202
[62] Hidayat, M. I.P., Meshless local B-spline collocation method for heterogeneous heat conduction problems, Eng Anal Bound Element, 101, 76-88 (2019) · Zbl 1464.80042
[63] Timoshenko, S. P.; Goodier, J. N., Theory of Elasticity, 3rd Edition (1970), McGraw-Hill: McGraw-Hill New York · Zbl 0266.73008
[64] Liew, K. M.; Cheng, Y.; Kitipornchai, S., Boundary element-free method (BEFM) and its application to two-dimensional elasticity problems, Int J Numer Method Eng, 65, 1310-1332 (2006) · Zbl 1147.74047
[65] Qu, W. Z., A high accuracy method for long-time evolution of acoustic wave equation, Appl Math Lett, 98, 135-141 (2019) · Zbl 1448.35325
[66] Qu, W. Z.; Fan, C. M.; Zhang, Y., Analysis of three-dimensional heat conduction in functionally graded materials by using a hybrid numerical method, Int J Heat Mass Transfer, 145, 118771, 1-10 (2019)
[67] Qu, W. Z.; Gu, Y.; Zhang, Y.; Fan, C. M.; Zhang, C., A combined scheme of generalized finite difference method and Krylov deferred correction technique for highly accurate solution of transient heat conduction problems, Int J Numer Method Eng, 117, 1, 63-83 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.