×

Determining a multi-layered fluid-solid medium from the acoustic measurements. (English) Zbl 1473.35378

The goal of this work is to study the inverse scattering of time-harmonic plane waves by a penetrable solid obstacle embedded in a two-layered inhomogeneous fluid medium. For the unique identification of the supports of the embedded solid obstacle and its surrounding layered fluid medium by virtue of far-field data, the proof is based on some well-posed interior transmission problems in suitable small domains and priori estimates for the solutions of the forward fluid-solid interaction problem.

MSC:

35P25 Scattering theory for PDEs
35R30 Inverse problems for PDEs
78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory
65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
35Q35 PDEs in connection with fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ammari, H.; Bao, G., Analysis of the scattering map of a linearized inverse medium problem for electromagnetic waves, Inverse Problems, 17, 219-234 (2001) · Zbl 0985.78017 · doi:10.1088/0266-5611/17/2/303
[2] Bao, G.; Gao, Y.; Li, P., Time-domain analysis of an acoustic-elastic interaction problem, Arch. Ration Mech. Anal., 229, 835-884 (2018) · Zbl 1394.35344 · doi:10.1007/s00205-018-1228-2
[3] Bao, G.; Liu, J., Numerical solution of inverse scattering problems with multi-experimental limited aperture data, SIAM J. Sci. Comput., 25, 1102-1117 (2003) · Zbl 1048.65058 · doi:10.1137/S1064827502409705
[4] Bao, G.; Li, P., Inverse medium scattering for the Helmholtz equation at fixed frequency, Inverse Problems, 21, 1621-1641 (2005) · Zbl 1086.35120 · doi:10.1088/0266-5611/21/5/007
[5] Cakoni, F.; Colton, D., A uniqueness theorem for an inverse electromagnetic scattering problem in inhomogeneous anisotropic media, Proc. Edinb. Math. Soc., 46, 293-314 (2003) · Zbl 1051.78013 · doi:10.1017/S0013091502000664
[6] Colton, D.; Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory (1998), Berlin: Springer, Berlin · Zbl 0893.35138
[7] Elschner, J.; Hu, G., Uniqueness in inverse transmission scattering problems for multilayered obstacles, Inverse Problems Imaging, 5, 793-813 (2011) · Zbl 1232.35193 · doi:10.3934/ipi.2011.5.793
[8] Elschner, J.; Hsiao, Gc; Rathsfeld, A., An inverse problem for fluid-solid interaction, Inverse Problems and Imaging, 2, 83-120 (2008) · Zbl 1141.35470 · doi:10.3934/ipi.2008.2.83
[9] Elschner, J.; Hsiao, Gc; Rathsfeld, A., An optimization method in inverse acoustic scattering by an elastic obstacle, SIAM J. Appl. Math., 70, 168-187 (2009) · Zbl 1186.35239 · doi:10.1137/080736922
[10] Gao, Y.; Li, P.; Zhang, B., Analysis of transient acoustic-elastic interaction in an unbounded structure, SIAM J Math. Anal., 49, 3951-3972 (2017) · Zbl 1382.35295 · doi:10.1137/16M1090326
[11] Luke, Cj; Martin, Pa, Fluid-solid interaction: acoustic scattering by a smooth elastic obstacle, SIAM J. Appl. Math., 55, 904-922 (1995) · Zbl 0832.73045 · doi:10.1137/S0036139993259027
[12] Hu, G.; Salo, M.; Vesalainen, Ev, Shape identification in inverse medium scattering problems with a singular far-field pattern, SIAM J. Math. Anal., 48, 152-165 (2016) · Zbl 1334.35427 · doi:10.1137/15M1032958
[13] Hsiao, Gc; Kleinman, Re; Roach, Gf, Weak solutions of fluid-solid interaction problems, Math. Nachr., 218, 139-163 (2000) · Zbl 0963.35043 · doi:10.1002/1522-2616(200010)218:1<139::AID-MANA139>3.0.CO;2-S
[14] Isakov, V., On uniqueness in the inverse transmission scattering problem, Commun. Partial Differ. Equat., 15, 1565-1587 (1990) · Zbl 0728.35148 · doi:10.1080/03605309908820737
[15] Kar, M.; Sini, M., Reconstruction of interfaces from the elastic farfield measurements using CGO solutions, SIAM J. Math. Anal., 46, 2650-2691 (2014) · Zbl 1301.35077 · doi:10.1137/120903130
[16] Kar, M.; Lin, Yh; Sini, M., The enclosure method for the anisotropic Maxwell’s system, SIAM J. Math. Anal., 47, 3488C-3527 (2015) · Zbl 1334.35429 · doi:10.1137/15100299X
[17] Kimeswenger, A.; Steinbach, O.; Unger, G., Coupled finite and boundary element methods for fluid-solid interaction eigenvalue problems, SIAM J. Numer. Anal., 52, 2400-2414 (2014) · Zbl 1307.74032 · doi:10.1137/13093755x
[18] Kirsch, A.; Ruiz, A., The factorization method for an inverse fluid-solid interaction scattering problem, Inverse Problems and Imaging, 6, 681-695 (2012) · Zbl 1261.35096 · doi:10.3934/ipi.2012.6.681
[19] Liu, H.; Zhao, H.; Zou, C., Determining scattering support of anisotropic acoustic mediums and obstacles, Commun. Math. Sci., 13, 4, 987-1000 (2015) · Zbl 1318.35082 · doi:10.4310/CMS.2015.v13.n4.a7
[20] Liu, X.; Zhang, B., Direct and inverse obstacle scattering problems in a piecewise homogeneous medium, SIAM J. Appl. Math., 70, 3105-3120 (2010) · Zbl 1211.35213 · doi:10.1137/090777578
[21] Natroshvili, D.; Kharibegashvili, S.; Tediashvili, Z., Direct and inverse fluid structure interaction problems, Rendiconti di Matematica, Serie VII, 20, 57-92 (2000) · Zbl 1169.35322
[22] Monk, P.; Selgas, V., An inverse fluid-solid interaction problem, Inverse Problems and Imaging, 3, 173-198 (2009) · Zbl 1183.65138 · doi:10.3934/ipi.2009.3.173
[23] Monk, P.; Selgas, V., Near field sampling type methods for the inverse fluid-solid interaction problem, Inverse Problems and Imaging, 5, 465-483 (2011) · Zbl 1408.74026 · doi:10.3934/ipi.2011.5.465
[24] Nagayasu, S.; Uhlmann, G.; Wang, Jn, Reconstruction of penetrable obstacles in acoustic scattering, SIAM J. Math. Anal., 43, 189-211 (2011) · Zbl 1234.35315 · doi:10.1137/09076218X
[25] Qu, F.; Yang, J., On recovery of an inhomogeneous cavity in inverse acoustic scattering, Inverse Problems and Imaging, 12, 281-291 (2018) · Zbl 1395.35221 · doi:10.3934/ipi.2018012
[26] Qu, F.; Yang, J.; Zhang, B., Recovering an elastic obstacle containing embedded objects by the acoustic far-field measurements, Inverse Problems, 34, 015002 (2018) · Zbl 1474.74065 · doi:10.1088/1361-6420/aa9c26
[27] Qu, F.; Yang, J.; Zhang, B., An approximate factorization method for inverse medium scattering with unknown buried objects, Inverse Problems, 33, 035007 (2017) · Zbl 1372.35370 · doi:10.1088/1361-6420/aa58d8
[28] Qu, F.; Zhang, H., Locating a complex inhomogeneous medium with an approximate factorization method, Inverse Problems, 35, 045001 (2019) · Zbl 1461.35242 · doi:10.1088/1361-6420/ab039a
[29] Qu, F.; Yang, J.; Zhang, H., Shape reconstruction in inverse scattering by an inhomogeneous cavity with internal measurements, SIAM Journal on Imaging Sciences, 12, 788-808 (2019) · Zbl 1524.35765 · doi:10.1137/18M1232401
[30] Yang, J.; Zhang, B.; Zhang, H., Uniqueness in inverse acoustic and electromagnetic scattering by penetrable obstacles, J. Differential Equations, 12, 6352-6383 (2018) · Zbl 1408.78006 · doi:10.1016/j.jde.2018.07.033
[31] Yang, J.; Zhang, B., An inverse transmission scattering problem for periodic media, Inverse Problems, 27, 125010 (2011) · Zbl 1237.78018 · doi:10.1088/0266-5611/27/12/125010
[32] Yang, J.; Zhang, B.; Zhang, H., The factorization method for reconstructing a penetrable obstacle with unknown buried objects, SIAM J. Appl. Math., 73, 617-635 (2013) · Zbl 1364.35224 · doi:10.1137/120883724
[33] Yin, T.; Hu, G.; Xu, L.; Zhang, B., Near-field imaging of scattering obstacles with the factorization method II. Fluid-solid interaction, Inverse Problems, 32, 015003 (2016) · Zbl 1332.35402 · doi:10.1088/0266-5611/32/1/015003
[34] Yin, T.; Hsiao, Gc; Xu, L., Boundary integral equation methods for the two-dimensional fluid-solid interaction problem, SIAM J. Numer. Anal., 55, 2361-2393 (2017) · Zbl 1386.35056 · doi:10.1137/16M1075673
[35] Yoshida, K., Reconstruction of a penetrable obstacle by complex spherical waves, J. Math. Anal. Appl., 369, 645-657 (2010) · Zbl 1196.35229 · doi:10.1016/j.jmaa.2010.03.065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.