×

New perspectives of granular computing in relation geometry induced by pairings. (English) Zbl 07074946

Summary: Given an arbitrary set \(\Omega \), we call a triple \({\mathfrak {P}}=(U,F, \Lambda )\), where \(U\) and \(\Lambda \) are two non-empty sets and \(F\) is a map from \(U\times \Omega \) into \(\Lambda \), a pairing on \(\Omega \). A pairing is an abstract mathematical generalization of the notion of information table, classically used in several scopes of granular computing and rough set theory. In this paper we undertake the study of pairings in relation to specific types of set operators, set systems and binary relations appearing in several branches of pure mathematics and information sciences. For example, an intersection-closed system \(MAXP({\mathfrak {P}})\) on \(\Omega \) can be canonically associated with any pairing \({\mathfrak {P}}\) on \(\Omega \) and we showed that for any intersection-closed system \(\mathfrak {S}\) on an arbitrary (even infinite) set \(\Omega \) there exists a pairing \({\mathfrak {P}}\) on \(\Omega \) such that \(MAXP({\mathfrak {P}})=\mathfrak {S}\). Next, we introduce some classes of pairings whose properties have a close analogy with corresponding notions derived from topology and matroid theory. We describe such classifications by means of a binary relation \(\leftarrow_{{\mathfrak {P}}}\) on the power set \(\mathcal {P}(\Omega )\) canonically associated with any pairing \({\mathfrak {P}}\). Using such a relation, we analyze new properties of intersection-closed systems and related operators, both within concrete models induced by metric spaces and also in connection with basic notions of common interest in several scopes of pure and applied mathematics and information sciences.

MSC:

06A15 Galois correspondences, closure operators (in relation to ordered sets)
08A02 Relational systems, laws of composition
68P01 General topics in the theory of data
68P05 Data structures
54E35 Metric spaces, metrizability
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D. M., Maibaum, T. S. E. (eds.) Handbook of Logic in Computer Science, Vol. 3. Oxford University Press, Oxford (1994)
[2] Aledo, JA; Martínez, S.; Valverde, JC, Parallel dynamical systems over directed dependency graphs, Appl. Math. Comput., 129, 1114-1119, (2012) · Zbl 1291.37018
[3] Aledo, JA; Diaz, LG; Martínez, S.; Valverde, JC, On periods and equilibria of computational sequential systems, Inf. Sci., 409, 27-34, (2017)
[4] Apollonio, N.; Caramia, M.; Franciosa, PG, On the Galois lattice of bipartite distance hereditary graphs, Discrete Appl. Math., 190, 13-23, (2015) · Zbl 1316.05033
[5] Armstrong, W.W.: Dependency Structures of Database Relationships, Information Processing, pp. 580-583. North-Holland, Amsterdam (1974)
[6] de Bakker, J.W., de Vink, E.P.: Control Flow Semantics. The MIT Press, Cambridge (1996) · Zbl 0941.68079
[7] Bayley, RA, Orthogonal partitions in designed experiments, Des. Codes Cryptogr., 8, 45-77, (1996)
[8] Bayley, R.A.: Association Schemes: Designed Experiments, Algebra and Combinatorics, p. 387. Cambridge University Press, Cambridge (2004) · Zbl 1051.05001
[9] Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society, Rhode Island (1967) · Zbl 0153.02501
[10] Bisi, C., On commuting polynomial automorphisms of \({\mathbb{C}}^2\), Publ. Mat., 48, 227-239, (2004) · Zbl 1119.14047
[11] Bisi, C., On commuting polynomial automorphisms of \({\mathbb{C}}^k\), \(k \ge 3\), Math. Z., 258, 875-891, (2008) · Zbl 1161.32006
[12] Bisi, C., On closed invariant sets in local dynamics, J. Math. Anal. Appl., 350, 327-332, (2009) · Zbl 1151.37315
[13] Cattaneo, G.; Chiaselotti, G.; Oliverio, PA; Stumbo, F., A new discrete dynamical system of signed integer partitions, Eur. J. Comb., 55, 119-143, (2016) · Zbl 1333.05026
[14] Chen, G., Zhong, N., Yao, Y.: A Hypergraph Model of Granular Computing. In: Proceedings IEEE International Conference on Granular Computing, pp 130-135 (2008)
[15] Chen, J.; Li, J., An application of rough sets to graph theory, Inf. Sci., 201, 114-127, (2012) · Zbl 1251.05165
[16] Chiaselotti, G., Ciucci, D., Gentile, T., Infusino, F.: Preclusivity and Simple Graphs. In: Proceedings RSFDGrC 2015, Lecture Notes in Computer Science, Vol. 9437, 127-137, Springer (2015)
[17] Chiaselotti, G.; Gentile, T.; Infusino, F., Knowledge pairing systems in granular computing, Knowl. Based Syst., 124, 144-163, (2017) · Zbl 1371.05327
[18] Chiaselotti, G.; Gentile, T.; Infusino, F., Dependency structures for decision tables, Int. J. Approx. Reason., 88, 333-370, (2017) · Zbl 1418.68187
[19] Chiaselotti, G.; Gentile, T.; Infusino, F.; Oliverio, PA, The adjacency matrix of a graph as a data table. A geometric perspective, Ann. Mat. Pura Appl., 196, 1073-1112, (2017) · Zbl 1366.05029
[20] Chiaselotti, G.; Gentile, T.; Infusino, F., Simplicial complexes and closure systems induced by indistinguishability relations, C. R. Acad. Sci. Paris Ser. I, 355, 991-1021, (2017) · Zbl 1371.05327
[21] Chiaselotti, G.; Gentile, T.; Infusino, F.; Oliverio, PA, Dependency and accuracy measures for directed graphs, Appl. Math. Comput., 320, 781-794, (2018) · Zbl 1426.05055
[22] Chiaselotti, G.; Gentile, T.; Infusino, F., Pairings and related symmetry notions, Ann. dell’Univ. Ferrara, 64, 285-322, (2018) · Zbl 1436.08001
[23] Chiaselotti, G.; Gentile, T.; Infusino, F., Granular computing on information tables: families of subsets and operators, Inf. Sci., 442-443, 72-102, (2018)
[24] Chiaselotti, G.; Gentile, T.; Infusino, F., Decision systems in rough set theory. A set operatorial perspective, J. Algebra Appl., 18, 1950004, (2019) · Zbl 1411.68155
[25] Chiaselotti, G.; Infusino, F., Notions from rough set theory in a generalized dependency relation context, Int. J. Approx. Reason., 98, 25-61, (2018) · Zbl 1446.03087
[26] Chiaselotti, G., Gentile, T., Infusino, F.: Symmetry geometry by pairings. J. Aust. Math. Soc., 1-19. https://doi.org/10.1017/S1446788718000137 · Zbl 1436.08001
[27] Doust, I.; Sánchez, S.; Weston, A., Asymptotic negative type properties of finite ultrametric spaces, J. Math. Anal. Appl., 446, 1776-1793, (2017) · Zbl 1367.46021
[28] Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer, Berlin (1999) · Zbl 0909.06001
[29] Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Continuous Lattices and Domains. Cambridge University Press, Cambridge (2003) · Zbl 1088.06001
[30] Hahn, G., Sabidussi, G. (Eds.): Graph Symmetry. Algebraic Methods and Applications, NATO ASI Series, Vol. 497, Springer, Berlin (1997)
[31] Huang, A.; Zhao, H.; Zhu, W., Nullity-based matroid of rough sets and its application to attribute reduction, Inf. Sci., 263, 153-165, (2014) · Zbl 1328.68228
[32] Kelarev, A.; Quinn, SJ, Directed graphs and combinatorial properties of semigroups, J. Algebra, 251, 16-26, (2002) · Zbl 1005.20043
[33] Kelarev, A.; Praeger, CE, On transitive Cayley graphs of groups and semigroups, Eur. J. Combin., 24, 59-72, (2003) · Zbl 1011.05027
[34] Kelarev, A.; Ryan, J.; Yearwood, J., Cayley graphs as classifiers for data mining: the influence of asymmetries, Discrete Math., 309, 5360-5369, (2009) · Zbl 1206.05050
[35] Larsen, KG; Winskell, G., Using information systems to solve recursive domain equations, Inf. Comput., 91, 232-258, (1991) · Zbl 0731.68071
[36] Li, X.; Liu, S., Matroidal approaches to rough sets via closure operators, Int. J. Approx. Reason., 53, 513-527, (2012) · Zbl 1246.68233
[37] Li, X.; Yi, H.; Liu, S., Rough sets and matroids from a Lattice-theoretic viewpoint, Inf. Sci., 342, 37-52, (2016) · Zbl 1403.06018
[38] Li, X.; Yi, H.; Wang, Z., Approximation via a double-matroid structure, Soft Comput., (2019)
[39] Mortveit, H.S., Reidys, C.M.: An Introduction to Sequential Dynamical Systems, p. xii+248. Springer, New York (2008) · Zbl 1135.37009
[40] Pawlak, Z.: Rough Sets-Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, Dordrecht (1991) · Zbl 0758.68054
[41] Pawlak, Z.; Skowron, A., Rudiments of rough sets, Inf. Sci., 177, 3-27, (2007) · Zbl 1142.68549
[42] Pedrycz, W.: Granular Computing: An Emerging Paradigm. Springer, Berlin (2001) · Zbl 0966.00017
[43] Pedrycz, W.: Granular Computing : Analysis and Design of Intelligent Systems. CRC Press, Boca Raton (2013)
[44] Pedrycz, W., Granular computing for data analytics: a manifesto of human-centric computing, EEE/CAA J. Autom. Sin., 5, 1025-1034, (2018)
[45] Polkowski, L.: Rough Sets: Mathematical Foundations. Springer, Berlin (2002) · Zbl 1040.68114
[46] Polkowski, L., On fractal dimension in information systems. Toward exact sets in infinite information systems, Fundam. Inf., 50, 305-314, (2002) · Zbl 1012.68218
[47] Polkowski, L., Artiemjew, P.: Granular Computing in Decision Approximation. An Application of Rough Mereology. Springer, Berlin (2015) · Zbl 1314.68006
[48] Rodríguez-López, J.; Schellekens, MP; Valero, O., An extension of the dual complexity space and an application to Computer Science, Topol. Appl., 156, 3052-3061, (2009) · Zbl 1198.68153
[49] Romaguera, S.; Sapena, A.; Tirado, P., The Banach fixed point theorem in fuzzy quasi-metric spaces with application to the domain of words, Topol. Appl., 154, 2196-2203, (2007) · Zbl 1119.54007
[50] Romaguera, S.; Schellekens, M.; Valero, O., Complexity spaces as quantitative domains of computation, Topol. Appl., 158, 853-860, (2011) · Zbl 1233.06005
[51] Sanahuja, SM, New rough approximations for \(n\)-cycles and \(n\)-paths, Appl. Math. Comput., 276, 96-108, (2016) · Zbl 1410.68355
[52] Sapena, A., A contribution to the study of fuzzy metric spaces, Appl. Gen. Topol., 2, 63-76, (2001) · Zbl 0985.54006
[53] Schellekens, M., The Smyth completion: A common foundation for denotational semantics and complexity analysis, Electron. Notes Theor. Comput. Sci., 1, 211-232, (1995) · Zbl 0910.68135
[54] Schellekens, M., A characterization of partial metrizability. Domains are quantifiable, Theor. Comput. Sci., 305, 409-432, (2003) · Zbl 1043.54011
[55] Scott, DS, Data types as lattices, SIAM J. Comput., 5, 522-587, (1976) · Zbl 0337.02018
[56] Scott, D. S.: Domains for Denotational Semantics, in Automata, Languages and Programming, Lecture Notes in Computer Science, Vol.140, 577-613 (1982) · Zbl 0495.68025
[57] Simovici, D.A., Djeraba, C.: Mathematical Tools for Data Mining. Springer, London (2014) · Zbl 1303.68006
[58] Skowron, A., Rauszer, C.: The Discernibility Matrices and Functions in Information Systems, Intelligent Decision Support, Theory and Decision Library series, vol. 11, Springer, Netherlands, pp. 331-362 (1992)
[59] Ślezak, D., Approximate entropy reducts, Fundam. Inf., 53, 365-390, (2002) · Zbl 1092.68676
[60] Ślezak, D.: On Generalized Decision Functions: Reducts, Networks and Ensembles, RSFDGrC, 13-23 (2015)
[61] Stawicki, S.; Ślezak, D.; Janusz, A.; Widz, S., Decision bireducts and decision reducts—a comparison, Int. J. Approx. Reason., 84, 75-109, (2017) · Zbl 1419.68178
[62] Tanga, J.; Shea, K.; Min, F.; Zhu, W., A matroidal approach to rough set theory, Theor. Comput. Sci., 471, 1-11, (2013) · Zbl 1258.05022
[63] Wang, J.; Zhu, W., Applications of bipartite graphs and their adjacency matrices to covering-based rough sets, Fundam. Inf., 156, 237-254, (2017) · Zbl 1381.68293
[64] Weston, A., On the generalized roundness of finite metric spaces, J. Math. Anal. Appl., 192, 323-334, (1995) · Zbl 0842.54034
[65] Yao, YY, Information granulation and rough set approximation, Int. J. Intell. Syst., 16, 87-104, (2001) · Zbl 0969.68079
[66] Yao, Y. Y., Zhong, N.: Granular Computing using Information Tables, in Data Mining, Rough Sets and Granular Computing, Physica-Verlag, pp. 102-124 (2002) · Zbl 1017.68053
[67] Yao, Y.: A Partition Model of Granular Computing. In: Transactions on Rough Sets I, Lecture Notes in Computer Science, vol. 3100, Springer-Verlag, 232-253 (2004) · Zbl 1104.68776
[68] Yao, Y.; Zhao, Y., Discernibility matrix simplification for constructing attribute reducts, Inf. Sci., 179, 867-882, (2009) · Zbl 1162.68704
[69] Xu, L., Continuity of posets via scott topology and sobrification, Topol. Appl., 153, 1886-1894, (2006) · Zbl 1104.06004
[70] Xu, L.; Mao, X., Strongly continuous posets and the local scott topology, J. Math. Anal. Appl., 345, 816-824, (2008) · Zbl 1152.06005
[71] Zhu, W.; Wang, S., Rough matroids based on relations, Inf. Sci., 232, 241-252, (2013) · Zbl 1293.05036
[72] Ziarko, W., Variable precision rough set model, J. Comput. Syst. Sci., 46, 39-59, (1993) · Zbl 0764.68162
[73] Ziarko, W., Probabilistic approach to rough sets, Int. J. Approx. Reason., 49, 272-284, (2008) · Zbl 1191.68705
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.