×

Axial and radial dynamics of compressible vortex rings. (English) Zbl 1473.76046

Summary: Vortex rings are typically generated by a piston within a tube for the incompressible case and a bursting membrane in a shock tube for the compressible case. Despite these different origins, they show a common general behaviour which allows us to compare both with a single numerical setup. The two main control parameters are the non-dimensional mass supply which can be expressed as the ratio of length and diameter of the tube \(L/D\) and the pressure ratio from the reservoir to ambient \(p_0/p_\infty\). They basically control the blowing duration and the compressibility.
We perform direct numerical simulations and studied the influence of variations in (\(L/D\)) as well as compressibility by keeping the discharge-time constant and appropriate combination of both parameters on four aspects: torus radius \(R\), core radius \(r\), axial position and the axial velocity of the vortex rings.
Comparison with a large number of available data from the literature shows good agreement and we were able to reconcile an apparent contradiction in the community about the exponent of the power law describing the axial dynamics of the vortex ring being \(1/2\) or \(3/2\). In particular, an increase in \(L/D\) leads to faster and longer growth of the vortex ring, while the maximum is reached earlier. The transition to the \((t^\ast)^{1/2}\) power law commences also earlier and the axial velocity is higher for larger values of \(L/D\). Keeping the discharge time constant and increasing the Mach number, we found increased torus radii \(R\), the maximum core radius \(r\) is reached later, and lower propagation velocities.

MSC:

76N15 Gas dynamics (general theory)
76M99 Basic methods in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lamb, H., Hydrodynamics (1945), Dover · JFM 26.0868.02
[2] Shariff, K.; Leonard, A., Vortex rings, Annu. Rev. Fluid Mech., 24, 1, 235-279 (1992) · Zbl 0743.76024
[3] Lim, T. T.; Nickels, T. B., Vortex rings, (Green, S. I., Fluid Vortices. Fluid Vortices, Fluid Mechanics and Its Applications, vol. 30 (1995), Springer Netherlands), 95-153
[4] Maxworthy, T., The structure and stability of vortex rings, J. Fluid Mech., 51, 15-32 (1972)
[5] Saffman, P. G., The velocity of viscous vortex rings, (Aircraft Wake Turbulence and Its Detection (1971)), 9-10
[6] Moore, D., The effect of compressibility on the speed of propagation of a vortex ring, Proc. R. Soc. Lond. A, 397, 87-97 (1985) · Zbl 0566.76057
[7] Baird, J., Supersonic vortex rings, Proc. R. Soc. Lond. A, 409, 1836, 59-65 (1987)
[8] Brouillette, M.; Hebert, C., Propagation and interaction of shock-generated vortices, Fluid Dyn. Res., 21, 3, 159-169 (1997)
[9] Elder, F. K.; De Haas, N., Experimental study of the formation of a vortex ring at the open end of a cylindrical shock tube, J. Appl. Phys., 23, 10, 1065-1069 (1952)
[10] Arakeri, J. H.; Das, D.; Krothapalli, A.; Lourenco, L., Vortex ring formation at the open end of a shock tube: A particle image velocimetry study, Phys. Fluids, 16, 4, 1008-1019 (2004) · Zbl 1186.76030
[11] Rikanati, A.; Sadot, O.; Ben-Dor, G.; Shvarts, D.; Kuribayashi, T.; Takayama, K., Shock-wave mach-reflection slip-stream instability: A secondary small-scale turbulent mixing phenomenon, Phys. Rev. Lett., 96 (2006)
[12] P.O. Witze, The impulsively started incompressible turbulent jet, Sandia Laboratories Report, SAND80-8617, 1980.; P.O. Witze, The impulsively started incompressible turbulent jet, Sandia Laboratories Report, SAND80-8617, 1980.
[13] Witze, P. O., Hot-film anemometer measurements in a starting turbulent jet, AIAA J., 21, 308-309 (1983)
[14] Gharib, M.; Rambod, E.; Shariff, K., A universal time scale for vortex ring formation, J. Fluid Mech., 360, 121-140 (1998) · Zbl 0922.76021
[15] Peña Fernández, J. J.; Sesterhenn, J., Compressible starting jet: pinch-off and vortex ring – trailing jet interaction, J. Fluid Mech., 817, 560-589 (2017) · Zbl 1383.76426
[16] Zhao, W.; Frankel, S. H.; Mongeau, L. G., Effects of trailing jet instability on vortex ring formation, Phys. Fluids, 12, 3, 589-596 (2000) · Zbl 1149.76598
[17] Didden, N., On the formation of vortex rings: Rolling-up and production of circulation, Z. Angew. Math. Phys. ZAMP, 30, 1, 101-116 (1979)
[18] Kelvin, L., The traslatory velocity of a circular vortex ring, Phil. Mag., 33, 511-512 (1867)
[19] Ricou, F.; Spalding, D., Measurements of entrainment by axisymmetric turbulent jets, J. Fluid Mech., 11, 21-32 (1961) · Zbl 0098.41104
[20] Dimotakis, P., The mixing transition in turbulent flows, J. Fluid Mech., 409, 69-98 (2000) · Zbl 0986.76024
[21] Pawlak, G.; Marugan Cruz, C.; Martinez Bazan, C.; Garcia Hrdy, P., Experimental characterization of starting jet dynamics, Fluid Dyn. Res., 39, 11-12, 711-730 (2007) · Zbl 1178.76043
[22] Adams, N. A.; Shariff, K., A high-resolution hybrid compact scheme for shock-turbulence interaction problems, J. Comput. Phys., 127, 27-51 (1996) · Zbl 0859.76041
[23] Anderson, D.; Tannehill, J.; Pletcher, R., (Computational Fluid Mechanics and heat transfer. Computational Fluid Mechanics and heat transfer, Series in Computational and Physical Processes in Mechanics and Thermal Sciences (1984), Hemisphere Publishing) · Zbl 0569.76001
[24] Schulze, J., Adjoint Based Jet-Noise Minimization (2011), Technische Universität Berlin, (Ph.D. thesis)
[25] Salas, M. D.; Iollo, A., Entropy jump across an inviscid shock wave, Theor. Comput. Fluid Dyn., 8, 5, 365-375 (1996) · Zbl 0880.76035
[26] Bogey, C.; de Caqueray, N.; Bailly, C., A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations, J. Comput. Phys., 228, 5, 1447-1465 (2009) · Zbl 1263.76046
[27] Ishii, R.; Fujimoto, H.; Hatta, N.; Umeda, Y., Experimental and numerical analysis of circular pulse jets, J. Fluid Mech., 392, 129-153 (1999) · Zbl 0938.76515
[28] Chepakovich, A. C., Visualization of Transient Single-And Two-Phase Jets Created by Diesel Engine Injectors (1993), University of British Columbia, (Ph.D. thesis)
[29] Zhang, H.; Chen, Z.; Li, B.; Jiang, X., The secondary vortex rings of a supersonic underexpanded circular jet with low pressure ratio, Eur. J. Mech. B Fluids, 46, 172-180 (2014) · Zbl 1297.76093
[30] Ouellette, P., Direct Injection of Natural Gas for Diesel Engine Fueling (1996), University of British Columbia, (Ph.D. thesis)
[31] Zhang, H.; Chen, Z.; Jiang, X.; Guo, Z., The initial flow characteristics of supersonic jets with different geometries, Phys. Lett. A, 379, 18-19, 1256-1262 (2015)
[32] Zhang, H.; Chen, Z.; Jiang, X.; Huang, Z., The starting flow structures and evolution of a supersonic planar jet, Comput. & Fluids, 114, 98-109 (2015) · Zbl 1390.76276
[33] Dora, C. L.; Saravanan, D.; Karunakar, K.; Das, D., Characteristics of embedded-shock-free compressible vortex rings: a detailed study using piv, Adv. Mech. Eng., 3, 650871 (2011)
[34] Cossali, G. E.; Coghe, A.; Araneo, L., Near-field entrainment in an impulsively started turbulent gas jet, AIAA J., 39, 6, 1113-1122 (2001)
[35] Das, D.; Bansal, M.; Manghnani, A., Generation and characteristics of vortex rings free of piston vortex and stopping vortex effects, J. Fluid Mech., 811, 138-167 (2017) · Zbl 1383.76281
[36] Abramovich, S.; Solan, A., The initial development of a submerged laminar round jet, J. Fluid Mech., 59, 4, 791-801 (1973)
[37] Joshi, A.; Schreiber, W., An experimental examination of an impulsively started incompressible turbulent jet, Exp. Fluids, 40, 1, 156-160 (2006)
[38] Bajpai, S. K., Experimental Study of an Unsteady, Axisymmetric, Turbulent Jet (2006), Indian Institute of Technology, Bombay, (Ph.D. thesis)
[39] Johari, H.; Rose, M.; Zhang, Q.; Bourque, S., Impulsively started turbulent jets, AIAA J., 35, 657-662 (1997)
[40] Lai, H.; Naughton, J. W.; Lindberg, W. R., An experimental investigation of starting impinging jets, J. Fluids Eng., 125, 2, 275-282 (2003)
[41] Weigand, A.; Gharib, M., On the decay of a turbulent vortex ring, Phys. Fluids, 6, 12, 3806-3808 (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.