×

zbMATH — the first resource for mathematics

Die Summationsformel für \(S=\frac{h}{\sqrt \pi} \sum_{k=- n}^{+n} e^{-h^2k^2}\). (Czech) JFM 50.0163.02
Časopis 53, 110-114 (1924); (Tschechisch, mit einem franz. Auszug.)
Die Formel lautet: \[ s=\frac{2}{\sqrt \pi} \int_0^{nh} e^{-t^2} dt +\frac{h}{\sqrt \pi} e^{-h^2n^2} +R_n,\;R_n=\frac{4h^3}{\sqrt \pi} \int_0^n xe^{-h^2x^2} \left\{ [x]-x+\frac 12 \right\} dx. \]
PDF BibTeX XML Cite