×

zbMATH — the first resource for mathematics

Sur les lois de forces centrales faisant décrire à leur point d’application une conique quelles que soient les conditions initiales. (English) JFM 22.0900.02
Die Centralkräfte, welche als blosse Functionen der Lage ihren Angriffspunkt einen Kegelschnitt als Bahncurve beschreiben lassen, sind zufolge einer von Hrn. Bertrand gegebenen Anregung gleichzeitig von Hrn. Darboux und Halphen bestimmt worden (C. R. LXXXIV, F. d. M. IX. 1877. 638ff., JFM 09.0638.03; JFM 09.0638.04), und Hr. Battaglini hat das etwas verallgemeinerte Problem bald darauf ebenfalls gelöst. Ohne der analytischen Lösung Halphen’s und ihrer Darstellung durch Hrn. Tisserand in seiner Mécanique céleste etwas Wesentliches hinzufügen zu wollen, teilt der Verf. jetzt nur die Methode mit, welche er in seiner Vorlesung gebraucht hat, um die Halphen’sche Rechnung möglichst abzukürzen. Diese Methode besteht in einer Anwendung der Homographie in der Mechanik, deren Theorie im vorangehenden Jahre an derselben Stelle gegeben ist (vgl. F. d. M. XXI. 1889. 904, JFM 21.0904.01). Die beiden möglichen Gestalten der Gesetze sind bekanntlich: \[ \begin{aligned} & F_1=-\frac{\mu r C^{\frac 32}}{(Bx+Ey+C)^3},\\ & F_2=\frac{\mu r}{(Ax^2+2Dxy+Fy^2)^{\frac 32}} \,.\end{aligned} \]

PDF BibTeX XML Cite
Full Text: DOI