×

Minimal warm inflation with complete medium response. (English) Zbl 1485.83156

Summary: If a homogeneous field evolves within a medium, with the latter gradually picking up a temperature, then the friction felt by the field depends on how its evolution rate compares with medium time scales. We suggest a framework which permits to incorporate the contributions from all medium time scales. As an example, we illustrate how warm axion inflation can be described by inputting the retarded pseudoscalar correlator of a thermal Yang-Mills plasma. Adopting a semi-realistic model for the latter, and starting the evolution at almost vanishing temperature, we show how the system heats up and then enters the “weak” or “strong” regime of warm inflation. Previous approximate treatments are scrutinized.

MSC:

83F05 Relativistic cosmology
83E05 Geometrodynamics and the holographic principle
81V35 Nuclear physics
80A10 Classical and relativistic thermodynamics
81V25 Other elementary particle theory in quantum theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Lozanov, Kaloian D., Lectures on Reheating after Inflation (2019) · Zbl 1470.83001
[2] Yokoyama, Junichi; Linde, Andrei D., Is warm inflation possible?, Phys. Rev. D, 60 (1999) · doi:10.1103/PhysRevD.60.083509
[3] Freese, Katherine; Frieman, Joshua A.; Olinto, Angela V., Natural inflation with pseudo - Nambu-Goldstone bosons, Phys. Rev. Lett., 65, 3233-3236 (1990) · doi:10.1103/PhysRevLett.65.3233
[4] Giusti, Leonardo; Lüscher, Martin, Topological susceptibility at T>T_c from master-field simulations of the SU(3) gauge theory, Eur. Phys. J. C, 79, 207 (2019) · doi:10.1140/epjc/s10052-019-6706-7
[5] Boccaletti, Alexander; Nogradi, Daniel, The semi-classical approximation at high temperature revisited, JHEP, 03, 045 (2020) · doi:10.1007/JHEP03(2020)045
[6] Anber, Mohamed M.; Sorbo, Lorenzo, Naturally inflating on steep potentials through electromagnetic dissipation, Phys. Rev. D, 81 (2010) · doi:10.1103/PhysRevD.81.043534
[7] Domcke, Valerie; Guidetti, Veronica; Welling, Yvette; Westphal, Alexander, Resonant backreaction in axion inflation, JCAP, 09 (2020) · Zbl 1493.83027 · doi:10.1088/1475-7516/2020/09/009
[8] Mishra, Hiranmaya; Mohanty, Subhendra; Nautiyal, Akhilesh, Warm natural inflation, Phys. Lett. B, 710, 245-250 (2012) · doi:10.1016/j.physletb.2012.02.005
[9] Visinelli, Luca, Natural Warm Inflation, JCAP, 09 (2011) · doi:10.1088/1475-7516/2011/09/013
[10] Hook, Anson; Marques-Tavares, Gustavo, Relaxation from particle production, JHEP, 12, 101 (2016) · doi:10.1007/JHEP12(2016)101
[11] Ferreira, Ricardo Z.; Notari, Alessio, Thermalized Axion Inflation, JCAP, 09 (2017) · doi:10.1088/1475-7516/2017/09/007
[12] Ferreira, Ricardo Z.; Notari, Alessio, Thermalized axion inflation: natural and monomial inflation with small r, Phys. Rev. D, 97 (2018) · Zbl 1527.83128 · doi:10.1103/PhysRevD.97.063528
[13] Kamali, Vahid., Warm pseudoscalar inflation, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.043520
[14] Berghaus, Kim V.; Graham, Peter W.; Kaplan, David E., Minimal Warm Inflation, JCAP, 03 (2020) · Zbl 1490.83073 · doi:10.1088/1475-7516/2020/03/034
[15] Berghaus, Kim V.; Karwal, Tanvi, Thermal Friction as a Solution to the Hubble Tension, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.083537
[16] Das, Suratna; Goswami, Gaurav; Krishnan, Chethan, Swampland, axions, and minimal warm inflation, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.103529
[17] Reyimuaji, Yakefu; Zhang, Xinyi, Warm-assisted natural inflation, JCAP, 04 (2021) · Zbl 1485.83176 · doi:10.1088/1475-7516/2021/04/077
[18] Berera, Arjun, Warm inflation, Phys. Rev. Lett., 75, 3218-3221 (1995) · doi:10.1103/PhysRevLett.75.3218
[19] Rangarajan, Raghavan, Current Status of Warm Inflation (2018)
[20] Obied, Georges; Ooguri, Hirosi; Spodyneiko, Lev; Vafa, Cumrun, De Sitter Space and the Swampland (2018)
[21] Garg, Sumit K.; Krishnan, Chethan, Bounds on Slow Roll and the de Sitter Swampland, JHEP, 11, 075 (2019) · doi:10.1007/JHEP11(2019)075
[22] McLerran, Larry D.; Mottola, Emil; Shaposhnikov, Mikhail E., Sphalerons and Axion Dynamics in High Temperature QCD, Phys. Rev. D, 43, 2027-2035 (1991) · doi:10.1103/PhysRevD.43.2027
[23] Moore, Guy D.; Tassler, Marcus, The Sphaleron Rate in SU(N) Gauge Theory, JHEP, 02, 105 (2011) · Zbl 1294.81146 · doi:10.1007/JHEP02(2011)105
[24] Linde, Andrei D., Chaotic Inflation, Phys. Lett. B, 129, 177-181 (1983) · doi:10.1016/0370-2693(83)90837-7
[25] Bastero-Gil, Mar; Berera, Arjun; Ramos, Rudnei O.; Rosa, João G., Towards a reliable effective field theory of inflation, Phys. Lett. B, 813 (2021) · Zbl 1476.83181 · doi:10.1016/j.physletb.2020.136055
[26] Bodeker, Dietrich, Moduli decay in the hot early Universe, JCAP, 06 (2006) · doi:10.1088/1475-7516/2006/06/027
[27] Laine, Mikko; Vuorinen, Aleksi, Basics of Thermal Field Theory (2016), Springer · Zbl 1356.81007
[28] Ignatius, J.; Kajantie, K.; Kurki-Suonio, H.; Laine, M., The growth of bubbles in cosmological phase transitions, Phys. Rev. D, 49, 3854-3868 (1994) · doi:10.1103/PhysRevD.49.3854
[29] Caron-Huot, S., Asymptotics of thermal spectral functions, Phys. Rev. D, 79 (2009) · doi:10.1103/PhysRevD.79.125009
[30] Laine, M.; Vuorinen, A.; Zhu, Y., Next-to-leading order thermal spectral functions in the perturbative domain, JHEP, 09, 084 (2011) · Zbl 1301.81302 · doi:10.1007/JHEP09(2011)084
[31] Kataev, A. L.; Krasnikov, N. V.; Pivovarov, A. A., Two Loop Calculations for the Propagators of Gluonic Currents, Nucl. Phys. B, 198, 508-518 (1982) · doi:10.1016/0550-3213(82)90338-8
[32] Laine, M.; Vepsalainen, M.; Vuorinen, A., Ultraviolet asymptotics of scalar and pseudoscalar correlators in hot Yang-Mills theory, JHEP, 10, 010 (2010) · Zbl 1291.81283 · doi:10.1007/JHEP10(2010)010
[33] Planck Collaboration; Akrami, Y., Planck 2018 results. X. Constraints on inflation, Astron. Astrophys., 641, A10 (2020) · doi:10.1051/0004-6361/201833887
[34] Graham, Chris; Moss, Ian G., Density fluctuations from warm inflation, JCAP, 07 (2009) · doi:10.1088/1475-7516/2009/07/013
[35] Bastero-Gil, Mar; Berera, Arjun; Moss, Ian G.; Ramos, Rudnei O., Cosmological fluctuations of a random field and radiation fluid, JCAP, 05 (2014) · Zbl 1360.83083 · doi:10.1088/1475-7516/2014/05/004
[36] Visinelli, Luca, Cosmological perturbations for an inflaton field coupled to radiation, JCAP, 01 (2015) · doi:10.1088/1475-7516/2015/01/005
[37] Benetti, Micol; Ramos, Rudnei O., Warm inflation dissipative effects: predictions and constraints from the Planck data, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.023517
[38] Jackson, G.; Laine, M., Hydrodynamic fluctuations from a weakly coupled scalar field, Eur. Phys. J. C, 78, 304 (2018) · doi:10.1140/epjc/s10052-018-5791-3
[39] Bastero-Gil, Mar; Berera, Arjun; Moss, Ian G.; Ramos, Rudnei O., Theory of non-Gaussianity in warm inflation, JCAP, 12 (2014) · Zbl 1360.83083 · doi:10.1088/1475-7516/2014/12/008
[40] Bastero-Gil, Mar; Berera, Arjun; Calderón, Jaime R., Reexamination of the warm inflation curvature perturbations spectrum, JCAP, 07 (2019) · Zbl 1515.83293 · doi:10.1088/1475-7516/2019/07/019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.