×

Sharp Steklov upper bound for submanifolds of revolution. (English) Zbl 1482.35142

The authors consider the classical Steklov problem for the Laplace-Beltrami operator defined on the boundary of a \(n\)-dimensional submanifold of revolution \(M\) embedded in \(\mathbb R^{n+1}\): \[ \begin{cases} -\Delta u =0, & \text{in } M,\\ \partial_\nu u=\sigma u, & \text{on }\Sigma, \end{cases} \] where \(\Sigma\) is the boundary of \(M\) and \(\nu\) is the canonical exterior normal to \(\Sigma\) in \(M\). We recall that this Steklov problem admits a sequence of nonnegative eigenvalues of finite multiplicities diverging to plus infinity, and enjoying a Courant minmax characterization. If we consider \(\sigma_{(k)}(M)\), the \(k\)-th distinct eigenvalue, that is without considering multiplicities, then \[ 0=\sigma_{(0)}(M)<\sigma_{(1)}(M)<\sigma_{(2)}(M)<\dots \] The main theorem states that, for \(n\ge 3\) and \(k\ge 1\), for any given manifold of revolution \(M^n\subset\mathbb R^{n+1}\) with one boundary component \(\Sigma\) isometric to \(\mathbb S^{n-1}\), then \[ \sigma_{(k)}(M)<k+n-2, \] and moreover this bound is sharp. The proof is based on a nice Dirichlet-Neumann bracketing technique on spherical shells where explicit computations are feasable and immediately show the general behaviour. This result complements those in [B. Colbois et al., Can. Math. Bull. 63, No. 1, 46–57 (2020; Zbl 1433.35205)] where lower bounds are proved.

MSC:

35P15 Estimates of eigenvalues in context of PDEs
35J25 Boundary value problems for second-order elliptic equations
35R01 PDEs on manifolds
58C40 Spectral theory; eigenvalue problems on manifolds

Citations:

Zbl 1433.35205
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Anné, C.: Perturbation du spectre \(X - TUB^\epsilon (Y)\) (conditions de Neumann). In Séminaire de Théorie Spectrale et Géométrie, No. 4, Année 1985-1986. Univ. Grenoble I, Saint-Martin-d’Hères, pp. 17-23 (1986) · Zbl 1002.58508
[2] Anné, C., Spectre du laplacien et écrasement d’anses, Ann. Sci. École Norm. Sup., 20, 2, 271-280 (1987) · Zbl 0634.58035 · doi:10.24033/asens.1533
[3] Colbois, B.; El Soufi, A.; Girouard, A., Compact manifolds with fixed boundary and large Steklov eigenvalues, Proc. Am. Math. Soc., 147, 9, 3813-3827 (2019) · Zbl 1483.58007 · doi:10.1090/proc/14426
[4] Colbois, B.; Girouard, A.; Gittins, K., Steklov eigenvalues of submanifolds with prescribed boundary in Euclidean space, J. Geom. Anal., 29, 2, 1811-1834 (2019) · Zbl 1423.35273 · doi:10.1007/s12220-018-0063-x
[5] Colbois, B.; Girouard, A.; Hassannezhad, A., The Steklov and Laplacian spectra of Riemannian manifolds with boundary, J. Funct. Anal., 278, 6, 1-10 (2020) · Zbl 1432.35148 · doi:10.1016/j.jfa.2019.108409
[6] Fraser, A.; Schoen, R., Shape optimization for the Steklov problem in higher dimensions, Adv. Math., 348, 146-162 (2019) · Zbl 1419.35139 · doi:10.1016/j.aim.2019.03.011
[7] Provenzano, L.; Stubbe, J., Weyl-type bounds for Steklov eigenvalues, J. Spectr. Theory, 9, 1, 349-377 (2019) · Zbl 1409.35160 · doi:10.4171/JST/250
[8] Verma, S., Bounds for the Steklov eigenvalues, Arch. Math., 111, 6, 657-668 (2018) · Zbl 1402.53048 · doi:10.1007/s00013-018-1238-1
[9] Xiong, C.: On the spectra of three Steklov eigenvalue problems on warped product manifolds. arXiv:1902.00656
[10] Xiong, C., Comparison of Steklov eigenvalues on a domain and Laplacian eigenvalues on its boundary in Riemannian manifolds, J. Funct. Anal., 275, 12, 3245-3258 (2018) · Zbl 1401.35225 · doi:10.1016/j.jfa.2018.09.012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.