×

Finite-time extended dissipativity control for interval type-2 fuzzy systems with resilient memory sampled-data controller. (English) Zbl 1481.93116

Summary: In this work, the finite-time extended dissipativity of the interval type-2 (IT2) fuzzy systems with probabilistic time-varying delay is discussed via resilient memory sampled-data control. To enable the stability analysis and control combination, an IT2 fuzzy model is employed to represent the dynamics of nonlinear systems of which the parameter uncertainties are taken by IT2 membership functions distinguish by the lower and upper membership functions. The main objective of this paper is to design a resilient memory sampled-data controller such that the resulting closed-loop system is finite-time bounded and satisfies extended dissipative performance. Moreover, the solvability of the derived conditions not only depends on the size of the delay but also on the probabilistic distribution of the delay taking values in some interval, thus probabilistic delay protocol is encountered in the IT2 fuzzy model. By employing suitable Lyapunov-Krasovskii functional (LKF) along with Wirtinger-based inequality, a set of sufficient conditions ensuring the finite-time extended dissipative performance for IT2 fuzzy systems are derived in terms of linear matrix inequalities (LMIs). Finally, two numerical simulations are presented to reveal the effectiveness of the developed technique.

MSC:

93D40 Finite-time stability
93C42 Fuzzy control/observation systems
93C57 Sampled-data control/observation systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Takagi, T.; Sugeno, M., Fuzzy identification of systems and it’s application to modeling and control, IEEE Trans. Syst. Man Cybern., 1, 116-132 (1985) · Zbl 0576.93021
[2] Sugeno, M.; Kang, G. T., Structure identification of fuzzy model, Fuzzy Sets Syst., 28, 1, 15-33 (1988) · Zbl 0652.93010
[3] Wang, J.; Xia, J.; Shen, H.; Xing, M.; Park, J. H., \(H_\infty\) Synchronization for fuzzy markov jump chaotic systems with piecewise-constant transition probabilities subject to PDT switching rule, IEEE Trans. Fuzzy Syst. (2020)
[4] Mendel, J. M.; Karnik, N. N.; Liang, Q., Type-2 fuzzy logic systems, IEEE Trans. Fuzzy Syst., 7, 6, 643-658 (1999)
[5] Lam, H. K.; Li, H.; Deters, C.; Wuerdemann, H.; Secco, E.; Althoefer, K., Control design for interval type-2 fuzzy systems under imperfect premise matching, IEEE Trans. Ind. Electron., 61, 2, 956-968 (2014)
[6] Lam, H. K.; Seneviratne, L. D., Stability analysis of interval type-2 fuzzy-model-based control systems, IEEE Trans. Syst. Man Cybern., 38, 3, 617-628 (2008)
[7] Hamid, M.; Elaheh, L. D., Designing a fuzzy type-2 model-based robust controller for ball and beam system, Procedia Comput. Sci., 105, 125-130 (2017)
[8] Xie, X.; Li, S.; Xu, B., Adaptive event-triggered \(H_\infty\) fuzzy filtering for interval type-2 T-S fuzzy-model-based networked control systems with asynchronously and imperfectly matched membership function, J. Frankl. Inst., 356, 18, 11760-11791 (2019) · Zbl 1427.93250
[9] Wu, C.; Li, H.; Lam, H. K., Fault detection for nonlinear networked systems based on quantization and dropout compensation: an interval type-2 fuzzy-model method, Neurocomputing., 191, 409-420 (2016)
[10] Sun, X.; Zhang, H.; Shan, Q.; Wang, Y., \(H{}_\infty\) control of interval type-2 fuzzy logic system with time-delay partition method, Neurocomputing., 275, 200-207 (2018)
[11] Du, Z.; Kao, Y.; Park, J. H., Interval type-2 fuzzy sampled-data control of time-delay systems, Inf. Sci., 487, 193-207 (2019) · Zbl 1454.93155
[12] Muoi, N. H.; Rajchakit, G.; Phat, V. N., LMI approach to finite-time stability and stabilization of singular linear discrete delay systems, Acta Appl. Math., 146, 1, 81-93 (2016) · Zbl 1358.93133
[13] Yan, S.; Shen, M.; Nguang, S. K.; Zhang, G.; Zhang, L., A distributed delay method for event-triggered control of T-S fuzzy networked systems with transmission delay, IEEE Trans. Fuzzy Syst., 27, 10, 1963-1973 (2019)
[14] Nagamani, G.; Ramasamy, S., Stochastic dissipativity and passivity analysis for discrete-time neural networks with probabilistic time-varying delays in the leakage term, Appl. Math. Comput., 289, 237-257 (2016) · Zbl 1410.34219
[15] Samidurai, R.; Sriraman, R., Non-fragile sampled-data stabilization analysis for linear systems with probabilistic time-varying delays, J. Frankl. Inst., 356, 8, 4335-4357 (2019) · Zbl 1412.93054
[16] Cheng, R.; Peng, M., Adaptive synchronization for complex networks with probabilistic time-varying delays, J. Frankl. Inst., 353, 18, 5099-5120 (2016) · Zbl 1349.93207
[17] Muthukumar, P.; Subramanian, K.; Lakshmanan, S., Robust finite time stabilization analysis for uncertain neural networks with leakage delay and probabilistic time-varying delays, J. Frankl. Inst., 353, 16, 4091-4112 (2016) · Zbl 1347.93222
[18] Kaviarasan, B.; Sakthivel, R.; Shi, Y., Reliable dissipative control of high-speed train with probabilistic time-varying delays, Int. J. Syst. Sci., 47, 16, 3940-3951 (2016) · Zbl 1346.93390
[19] Gao, H.; Xia, J.; Zhuang, G., Robust finite-time extended dissipative control for a class of uncertain switched delay systems, Int. J. Cont. Autom. Syst., 16, 3, 1459-1468 (2018)
[20] Li, M.; Zhao, J.; Xia, J.; Zhuang, G.; Zhang, W., Extended dissipative analysis and synthesis for network control systems with an event-triggered scheme, Neurocomputing., 312, 34-40 (2018)
[21] Li, H.; Wu, L.; Lam, H. K.; Gao, Y., Sampled-data control of interval type-2 fuzzy-model-based systems. in: analysis and synthesis for interval type-2 fuzzy-model-based systems, Springer., 4, 51-72 (2016) · Zbl 1353.93003
[22] Ju, H.; Shen, H.; Wu, Z. G., Finite-time reliable \(L_2 - L_\infty / H_\infty\) control for takagi-sugeno fuzzy systems with actuator faults, IET Control Theory Appl., 8, 9, 688-696 (2014)
[23] Serrano, F.; Rossell, J. M., Hybrid passivity based and fuzzy type-2 controller for chaotic and hyper-chaotic systems, Acta Mech. Autom., 11, 2, 96-103 (2017)
[24] Zhang, Z.; Zhou, Q.; Wu, C.; Li, H., Dissipativity-based reliable interval type-2 fuzzy filter design for uncertain nonlinear systems, Int. J. Fuzzy Syst., 20, 2, 309-402 (2018)
[25] Zhang, B.; Zheng, W.; Xu, S., Filtering of markovian jump delay systems based on a new performance index, IEEE Trans. Circ. Syst., 60, 5, 1250-1263 (2013) · Zbl 1468.94288
[26] Wang, J.; Huang, Z.; Wu, Z.; Cao, J.; Shen, H., Extended dissipative control for singularly perturbed PDT switched systems and its application, IEEE Trans. Circuit. Syst. I (2020) · Zbl 1468.93116
[27] Zhou, S.; Han, Y., Extended dissipativity and control synthesis of interval type-2 fuzzy systems via line integral Lyapunov function, IEEE Trans. Fuzzy Syst. (2019)
[28] Li, H.; Pan, Y.; Zhou, Q., Filter design for interval type-2 fuzzy systems with D stability constraints under a unified frame, IEEE Trans. Fuzzy Syst., 23, 3, 719-725 (2015)
[29] Tang, X.; Deng, L.; Yu, J.; Qu, H., Output feedback predictive control of interval type-2 T—S fuzzy systems with Markovian packet loss, IEEE Trans. Fuzzy Syst., 26, 4, 2450-2459 (2018)
[30] Chaoui, H.; Khayamy, M.; Aljarboua, A. A., Adaptive interval type-2 fuzzy logic control for PMSM drives with a modified reference frame, IEEE Trans. Ind. Electron., 64, 5, 3786-3797 (2017)
[31] Li, H.; Wang, J.; Wu, L.; Lam, H.; Gao, Y., Optimal guaranteed cost sliding-mode control of interval type-2 fuzzy time-delay systems, IEEE Trans. Fuzzy Syst., 26, 1, 246-257 (2018)
[32] Li, H.; Sun, X.; Shi, P.; Lam, H. K., Control design of interval type-2 fuzzy systems with actuator fault: sampled-data control approach, Inf. Sci., 302, 1-13 (2015) · Zbl 1360.93377
[33] Ge, C.; Shi, Y.; Park, J. H.; Hua, C., Robust \(H_\infty\) stabilization for T-S fuzzy systems with time-varying delays and memory sampled-data control, Appl. Math. Comput., 346, 500-512 (2019) · Zbl 1428.93063
[34] Fridman, E., A refined input delay approach to sampled-data control, Automatica, 46, 2, 421-427 (2010) · Zbl 1205.93099
[35] Wu, Y.; Karimi, H. R.; Lu, R., Sampled-data control of network systems in industrial manufacturing, IEEE Trans. Ind. Electron., 65, 11, 9016-9024 (2018)
[36] Luo, J.; Liu, X.; Tian, W.; Zhong, S.; Shi, K.; Cheng, J., A new approach to generalized dissipativity analysis for fuzzy systems with coupling memory sampled-data control, Appl. Math. Comput., 368, 124774 (2020) · Zbl 1433.93078
[37] Liu, Y.; Park, J. H.; Guo, B.; Shu, Y., Further results on stabilization of chaotic systems based on fuzzy memory sampled-data control, IEEE Trans. Fuzzy Syst., 26, 2, 1040-1045 (2018)
[38] Wang, X.; Liu, X.; She, K.; Zhong, S.; Zhong, Q., Extended dissipative memory sampled-data synchronization control of complex networks with communication delays, Neurocomputing., 347, 1-12 (2018)
[39] Liu, Y.; Guo, B.; Park, J. H.; Lee, S., Nonfragile exponential synchronization of delayed complex dynamical networks with memory sampled-data control, IEEE Trans. Neural Netw. Learn. Syst., 29, 1, 118-128 (2018)
[40] Zhao, T.; Jiahao, L.; Dian, S., Finite-time control for interval type-2 fuzzy time-delay systems with norm-bounded uncertainties and limited communication capacity, Inf. Sci., 483, 153-173 (2019) · Zbl 1453.93217
[41] Lu, Q.; Shi, P.; Lam, H. K.; Zhao, Y., Interval type-2 fuzzy model predictive control of nonlinear networked control systems, IEEE Trans. Fuzzy Syst., 23, 6, 2317-2328 (2015)
[42] Song, X.; Song, S.; Liu, L.; Inés Tejado, B., Adaptive interval type-2 fuzzy sliding mode control for fractional-order systems based on finite-time scheme, J. Intel. Fuzzy Syst., 32, 3, 1903-1915 (2017) · Zbl 1375.93075
[43] Sun, X.; Zhang, H.; Han, J.; Wang, Y., Non-fragile control for interval type-2 T-S fuzzy logic control systems with time-delay, J. Frankl. Inst., 354, 18, 7997-8014 (2017) · Zbl 1380.93160
[44] Liu, K.; Fridman, E., Wirtinger’s inequality and Lyapunov-based sampled-data stabilization, Automatica, 48, 1, 102-108 (2012) · Zbl 1244.93094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.