×

Malaria and COVID-19 co-dynamics: a mathematical model and optimal control. (English) Zbl 1481.92165

Summary: Malaria, one of the longest-known vector-borne diseases, poses a major health problem in tropical and subtropical regions of the world. Its complexity is currently being exacerbated by the emerging COVID-19 pandemic and the threats of its second wave and looming third wave. We formulate and analyze a mathematical model incorporating some epidemiological features of the co-dynamics of both malaria and COVID-19. Sufficient conditions for the stability of the malaria only and COVID-19 only sub-models’ equilibria are derived. The COVID-19 only sub-model has globally asymptotically stable equilibria while under certain condition, the malaria-only could undergo the phenomenon of backward bifurcation whenever the sub-model reproduction number is less than unity. The equilibria of the dual malaria-COVID19 model are locally asymptotically stable as global stability is precluded owing to the possible occurrence of backward bifurcation. Optimal control of the full model to mitigate the spread of both diseases and their co-infection are derived. Pontryagin’s Maximum Principle is applied to establish the existence of the optimal control problem and to derive the necessary conditions for optimal control of the diseases. Though this is not a case study, simulation results to support theoretical analysis of the optimal control suggests that concurrently applying malaria and COVID-19 protective measures could help mitigate their spread compared to applying each preventive control measure singly as the world continues to deal with this unprecedented and unparalleled COVID-19 pandemic.

MSC:

92D30 Epidemiology
34C60 Qualitative investigation and simulation of ordinary differential equation models
49K15 Optimality conditions for problems involving ordinary differential equations
49N90 Applications of optimal control and differential games
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Mtisi, E.; Rwezaura, H.; Tchuenche, J. M., A mathematical analysis of malaria and tuberculosis co-dynamics, Discrete Contin. Dyn. Syst. B, 12, 4, 827-864 (2009) · Zbl 1181.92058
[2] CMA, P.; Tenreiro Machado, J. A., Fractional model for malaria transmission under control strategies, Comput. Math. Appl., 66, 5, 908-916 (2013)
[3] Mukandavire, Z.; Gumel, A. B.; Garira, W.; Tchuenche, J. M., Mathematical analysis of a model for HIV-malaria co-infection, Math. Biosci. Eng., 6, 2, 333-362 (2009) · Zbl 1167.92020
[4] Tchuenche, J. M.; Chiyaka, C.; Chan, D.; Matthews, A.; Mayer, G., A mathematical model for antimalarial drug resistance, Math. Med. Biol., 1-21 (2010)
[5] Nadim Sk, S.; Chattopadhyay, J., Occurrence of backward bifurcation and prediction of disease transmission with imperfect lockdown: a case study on COVID-19, Chaos Solitons Fractals, 140, 110163 (2020) · Zbl 1495.92093
[6] Wu, J. T.; Leung, K.; Leung, G. M., Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study, Lancet, 395, 10225, 689-697 (2020)
[7] Li, Q.; Guan, X.; Wu, P., Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia, N Engl J Med. (2020)
[8] Feng, L. X.; Jing, S. L.; Hu, S. K.; Wang, D. F.; Huo, H. F., Modelling the effects of media coverage and quarantine on the COVID-19 infections in the UK, Math. Biosci. Eng., 618-3636 (2020) · Zbl 1467.92197
[9] WHO, 2020, Malaria & COVID-19 https://www.who.int/teams/global-malaria-programme/covid-19, Accessed November 30, 2020.
[10] Ansumana, R.; Sankoh, O.; Zumla, A., Effects of disruption from COVID-19 on antimalarial strategies, Nat. Med., 26, 1334-1336 (2020)
[11] Gutman, J. R.; Lucchi, N. W.; Cantey, P. T.; Steinhardt, L. C.; Samuels, A. M.; Kamb, M. L.; Kapella, B. K.; McElroy, P. D.; Udhayakumar, V.; Lindblade, K. A., Malaria and parasitic neglected tropical diseases: potential syndemics with COVID-19?, Am. J. Trop. Med. Hyg., 103, 2, 572-577 (2020)
[12] Liu, Z.; Magal, P.; Seydi, O.; Webb, G. F., Understanding unreported cases in the COVID-19 epidemic outbreak in Wuhan, China, and the importance of major health interventions, MPDI Biol., 9, 50, 1-12 (2020)
[13] Liu, Z.; Magal, P.; Seydi, O.; Webb, G. F., Predicting the cumulative number of cases for COVID-19 in China from early data, Math. Biosci. Eng., 17, 4, 3040-3051 (2020) · Zbl 1467.92215
[14] Liu, Z.; Magal, P.; Seydi, O.; Webb, G. F., A COVID-19 epidemic model with latency period, Infect. Disease Model., 5, 323-337 (2020)
[15] Kouakep, Y. T.; Tchoumi, S. Y.; DLM, F.; FGT, K.; Ngounou, D.; Mboula, E.; Kamla, V.; Kamgang, J. C., Modelling the anti-COVID19 individual or collective containment strategies in cameroon, Appl. Math. Sci., 15, 2 (2021)
[16] Weiss, D. J.; Bertozzi-Villa, A.; Rumisha, S. F.; Amratia, P.; Arambepola, R.; Battle, K. E., Indirect effects of the COVID-19 pandemic on malaria intervention coverage, morbidity, and mortality in africa: a geospatial modelling analysis, Lancet Inf. Dis., 21, 59-69 (2020)
[17] Sherrard-Smith, E.; Hogan, A. B.; Hamlet, A., The potential public health consequences of COVID-19 on malaria in Africa, Nat. Med., 26, 1411-1416 (2020)
[18] Sumeyye, C., Dynamic analysis of a mathematical model with health care capacity for COVID-19 pandemic, Chaos Solitons Fractals, 139, 110033 (2020)
[19] Rogerson, S. J.; Beeson, J. G.; Laman, M.; Poespoprodjo, J. R.; William, T.; Simpson, J. A.; Price, R. N., ACREME investigators. Identifying and combating the impacts of COVID-19 on malaria, BMC Med., 18, 1, 239 (2020)
[20] Hogan, A. B.; Jewell, B. L.; Sherrard-Smith, E.; Vesga, J. F.; Watson, O. J.; Whittaker, C., Potential impact of the COVID-19 pandemic on HIV, tuberculosis, and malaria in low-income and middle-income countries: a modelling study, Lancet Glob Health, 8, 9, e1132-e1141 (2020)
[21] Verduyn, M.; Allou, N.; Gazaille, V.; Andre, M.; Desroche, T.; M-C, J., Co-infection of dengue and COVID-19: a case report, PLoS Negl. Trop. Dis., 14, 8, E0008476 (2020)
[22] Bernoulli, D., Essai d’une nouvelle analyse de la mortalite causee par la petite verole et des avantages de l’inoculation pour la prevenir, Mem. Math. Phys. Acad. Sci. Paris, 1-45 (1760)
[23] Dietz, K.; Heesterbeek, J., Daniel Bernoulli’s epidemiological model revisited, Math. Biosci., 180, 1-21 (2002) · Zbl 1019.92028
[24] Pedro, S. A.; Ndjomatchoua, F. T.; Jentsch, P.; Tchuenche, J. M.; Anand, M.; Bauch, C. T., Conditions for a second wave of COVID-19 due to interactions between disease dynamics and social processes, Front. Phys., 8, 574514 (2020)
[25] L. Pontryagin, V. Boltyanskii, R. Gamkrelidze, E. Mishchenko, The mathematical theory of optimal control process. 4, 1986,
[26] Qiu, Z., Dynamical behavior of a vector-host epidemic model with demographic structure, Comput. Math. Appl., 56, 12, 3118-3129 (2008) · Zbl 1165.34382
[27] Zhang, J.; Ma, Z., Global dynamics of an \(S E I R\) epidemic model with saturating contact rate, Math. Biosci., 185, 15-32 (2003) · Zbl 1021.92040
[28] Perko, L., Differential equations and dynamical systems, Text in Applied Mathematics, 7 (2000), Springer: Springer Berlin
[29] Korobeinikov, A.; Wake, G. C., Lyapunov functions and global stability for SIR, SIRS, and \(S I S\) epidemiological models, Appl. Math. Lett., 15, 955-960 (2002) · Zbl 1022.34044
[30] Kermack, W. O.; McKendrick, A. G., A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond., 115, 700-721 (1927) · JFM 53.0517.01
[31] van den, D. P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 1, 29-48 (2002) · Zbl 1015.92036
[32] Castillo-Chavez, C.; Song, B., Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 1, 2, 361-404 (2004) · Zbl 1060.92041
[33] Chiyaka, C.; Tchuenche, J. M.; Garira, W.; Dube, S., A mathematical analysis of the effects of control strategies on the transmission dynamics of malaria, Appl. Math. Comput., 195, 2, 641-662 (2008) · Zbl 1128.92022
[34] Carr, J., Applications Centre Manifold Theory (1981), Springer-Verlag: Springer-Verlag New York · Zbl 0464.58001
[35] Hutson, V.; Schmitt, K., Permanence and the dynamics of biological systems, Math. Biosci., 111, 1-71 (1992) · Zbl 0783.92002
[36] Dushoff, J.; Huang, W.; Castillo-Chavez, C., Backwards bifurcations and catastrophe in simple models of fatal diseases, J. Math. Biol., 36, 227-248 (1998) · Zbl 0917.92022
[37] Bonyah, E.; Okoson, K. O., Mathematical modeling of Zika virus, Asian Pacif. J. Trop. Dis., 6, 9, 673-679 (2016)
[38] Mushayabasa, S.; AAE, L.; Modnak, C.; Wang, J., Optimal control analysis applied to a two-path model for guinea worm disease, Electron. J. Differ. Equ., 70, 1-23 (2020) · Zbl 1448.92324
[39] Joshi, H. R.; Lenhart, S.; Li, M. Y.; Wang, L., Optimal control methods applied to disease models, Contemp. Math., 410, 187-207 (2006) · Zbl 1148.49018
[40] F. Saldana, J.A. Camacho-Gutierrez, A. Korobeinikov, Impact of a cost functional on the optimal control and the cost-effectiveness: control of a spreading infection as a case study, 2021, arXiv:2011.06648access February 1.
[41] Fleming, W.; Rishel, R., Deterministic and Stochastic Optimal Control, 1, 222 (1975), Springer-Verlag · Zbl 0323.49001
[42] Agusto, F. B., Optimal isolation control strategies and cost-effectiveness analysis of a two-strain avian influenza model, Biosystems, 113, 3, 155-164 (2013)
[43] Lukes, D. L., Differential Equation Classical to Controlled Mathematical in Science and Engineering (1982), Academic Press: Academic Press New York, NY, USA · Zbl 0509.34003
[44] Kirschner, D.; Lenhart, S.; Serbin, S., Optimal control of the chemotherapy of HIV, J. Math. Biol., 35, 775-792 (1997) · Zbl 0876.92016
[45] Adams, B. M.; Banks, H. T.; Kwon, H.; Tran, H. T., Dynamic multidrug therapies for HIV: Optimal and STI approaches, Math. Biosci. Eng., 1, 2, 223-241 (2004) · Zbl 1060.92034
[46] Lenhart, S.; Workman, J. T., Optimal control applied to biological models, Mathematical and Computational Biology Series (2007), Chapman & Hall/CRC · Zbl 1291.92010
[47] Okosun, K. O.; Makinde, O. D., Optimal control analysis of malaria in the presence of non-linear incidence rate, Appl. Comput. Math., 12, 1, 20-32 (2013) · Zbl 1284.92052
[48] Buonomo, B., Analysis of a malaria model with mosquito host choice and bed-net control, Int. J. Biomath., 8, 6 (2015) · Zbl 1356.92079
[49] Linton, N. M.; Kobayashi, T.; Yang, Y.; Hayashi, K.; Akhmetzhanov, A. R.; Jung, S.-m.; Yuan, B.; Kinoshita, R.; Nishiura, H., Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: a statistical analysis of publicly available case data, J. Clin. Med., 9, 2, 538 (2020)
[50] Ngonghala, C. N.; Iboi, E.; Eikenberry, S.; Scotch, M.; MacIntyre, C. R.; Bonds, M. H.; Gumel, A. B., Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel coronavirus, Math. Biosci., 325 (2020) · Zbl 1448.92135
[51] Anguelov, R.; Dumont, Y.; Lubuma, J.; Mureithi, E., Stability analysis and dynamics preserving nonstandard finite difference schemes for a malaria model. mathematical population studies, Int. J. Math. Demogr., 20, 101-122 (2013) · Zbl 1409.92221
[52] S. Zio, I. Tougri, B. Lamien, Propagation du COVID19 au burkina faso, modelisation bayesienne et quantification des incertitudes: premiere approche, preprint, Ecole Polytechnique de Ouagadougou (EPO) Ouagadougou (2020).
[53] Chitnis, N.; Hyman, J. M.; Cushing, J., Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70, 5, 1272-1296 (2008) · Zbl 1142.92025
[54] Okosun, O.; Ouifki, R.; Nizar, M., Optimal control analysis of a malaria disease transmission model that includes treatment and vaccination with waning immunity, Biosystems, 106, 2-3, 136-145 (2011)
[55] Tchoumi, S. Y.; Kamgang, J. C.; Tieudjo, D.; Sallet, G., A basic general model of vector-borne diseases, Commun. Math. Biol. Neurosci., 2018, 3 (2018)
[56] Agusto, F. B.; ELmojtaba, I. M., Optimal control and cost-effective analysis of malaria/visceral leishmaniasis co-infection, PLoS One, 12, 2 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.