×

Estimating the probability of a rare event via elliptical copulas. (English) Zbl 1481.91182

Summary: A rare event happens with an extremely small probability but may cost billions of dollars. How to model and estimate the small probability of such an event is of importance to the insurance industry. Based on multivariate extreme value theory, methods have been proposed to extrapolate data into a far tail region. However, questions still remain open, such as the direction of extrapolation for a multivariate distribution and threshold selection for both marginals and the tail dependence function. In this paper we provide a way to estimate the probability of a rare event via modeling marginals and dependence by heavy tailed distributions and elliptical copulas, respectively. Hence, the direction of extrapolation becomes irrelevant. Moreover we employ recent threshold selection procedures to choose tuning parameters automatically.

MSC:

91G05 Actuarial mathematics
62P05 Applications of statistics to actuarial sciences and financial mathematics
62H05 Characterization and structure theory for multivariate probability distributions; copulas
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Asimit, A. V. and Jones, B. L. 2007. Extreme Behavior of Bivariate Elliptical Distributions. Insurance: Mathematics and Economics, 41: 53-61. · Zbl 1117.60014
[2] Bolance, C., Giullen, M. and Nielsen, J. P. 2003. Kernel Density Estimation of Actuarial Loss Functions. Insurance: Mathematics and Economics, 32: 19-36. · Zbl 1024.62041
[3] Breyman, W., Dias, A. and Embrechts, P. 2003. Dependence Structures for Multivariate High-Frequency Data in Finance. Quantitative Finance, 3: 1-14. · Zbl 1408.62173
[4] Chen, X. and Fan, Y. 2005. Pseudo-Likelihood Ratio Tests for Semiparametric Multivariate Copula Model Selection. Canadian Journal of Statistics, 33(2): 389-414. · Zbl 1077.62032
[5] de Haan, L. and Ferreira, A. 2006. Extreme Value Theory: An Introduction, New York: Springer. · Zbl 1101.62002
[6] de Haan, L. and de Ronde, J. 1988. Sea and Wind: Multivariate Extremes at Work. Extremes, 1: 7-45. · Zbl 0921.62144
[7] de Haan, L. and Sinha, A. K. 1999. Estimating the Probability of a Rare Event. Annuals of Statistics, 27: 732-759. · Zbl 1105.62344
[8] Denuit, M., Purcaru, O. and Van Keilegom, I. 2006. Bivariate Archimedean Copula Models for Censored Data in Non-Life Insurance. Journal of Actuarial Practice, 13: 5-32. · Zbl 1192.91114
[9] Dupuis, D. and Jones, B. L. 2006. Multivariate Extreme Value Theory and Its Usefulness in Understanding Risk. North American Actuarial Journal, 10(4): 1-27.
[10] Fang, K. T., Kotz, S. and Ng, K. W. 1990. Symmetric Multivariate and Related Distributions, Boca Raton, FL: Chapman & Hall/CRC.
[11] Frees, Edward W. and Valdez, E. A. 1998. Understanding Relationships Using Copulas. North American Actuarial Journal, 2(1): 1-25. · Zbl 1081.62564
[12] Frees, Edward W. and Wang, P. 2006. Copula Credibility for Aggregate Loss Models. Insurance: Mathematics and Economics, 38: 360-373. · Zbl 1132.91489
[13] Genest, G. Christian, Ghoudi, Kilani and Rivest, Louis-Paul. 1998. Understanding Relationship Using Copulas. North American Actuarial Journal, 2(1): 143-149. Discussion of E. W. Frees and E. A. Valdez
[14] Hashorva, E. 2005. Extremes of Asymptotically Spherical and Elliptical Random Vectors. Insurance: Mathematics and Economics, 36: 285-302. · Zbl 1110.62023
[15] Klugman, S. A. and Parsa, R. 1999. Fitting Bivariate Loss Distributions with Copulas. Insurance: Mathematics and Economics, 24: 139-148. · Zbl 0931.62044
[16] Klüppelber, C., Kuhn, G. and Peng, L. 2007. Estimating the Tail Dependence Function of an Elliptical Distribution. Bernoulli, 13: 229-251. · Zbl 1111.62048
[17] Klüppelber, C., Kuhn, G. and Peng, L. 2008. Semi-Parametric Models for the Multivariate Tail Dependence Function—The Asymptotically Dependent Case. Scandinavian Journal of Statistics, in press
[18] Lane, M. N. 2000. Pricing Risk Transfer Transactions. ASTIN Bulletin, 30(2): 259-293.
[19] Matthys, G., Delafosse, E., Guillou, A. and Beirlant, J. 2004. Estimating Catastrophic Quantile Levels for Heavy-Tailed Distributions. Insurance: Mathematics and Economics, 34: 517-537. · Zbl 1188.91237
[20] Mcneil, A., Frey, R. and Embrechts, P. 2005. Quantitative Risk Management, Princeton, NJ: Princeton University Press. · Zbl 1089.91037
[21] Peng, L. 2007a. A Practical Way for Analyzing Heavy Tailed Data Technical report. http://www.math.gatech.edu/ peng
[22] Peng, L. 2007b. A Practical Way for Estimating Tail Dependence Functions Technical report. http://www.math.gatech.edu/ peng.
[23] Valdez, E. A. and Chernih, A. 2003. Wang’s Capital Allocation Formula for Elliptically Contoured Distributions. Insurance: Mathematics and Economics, 33: 517-532. · Zbl 1103.91375
[24] Van Den Goorbergh, R. W. J., Genest, C. and Werker, B. J. M. 2005. Bivariate Option Pricing Using Dynamic Copula Models. Insurance: Mathematics and Economics, 37: 101-114. · Zbl 1102.91059
[25] Vandewalle, B. and Beirlant, J. 2006. On Univariate Extreme Value Statistics and the Estimation of Reinsurance Premiums. Insurance: Mathematics and Economics, 38: 441-459. · Zbl 1168.62392
[26] Vemic, R. 2006. Multivariate Skew-Normal Distributions with Applications in Insurance. Insurance: Mathematics and Economics, 38: 413-426.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.